MPLS on practice with RouterOS

Case study. Implementation in the network of Skywire Technologies, Pty. South Africa

About me

- Alex Vishnyakov, Mikrotik trainer, Cisco CCNP, FreeBSD, Linux
- Main areas BGP and dynamic routing, MPLS, security
- Currently working as ISP network team leader, Skywire Technologies Pty, South Africa

It's time for Africa

It's time for Africa

Network description

- B2B only services in SA
- Presence in all big cities of SA, more than 1500 Km wide network
- Over thousand of mid-size/large enterprises
- Last mile services for 2nd largiest Telco in SA
- Transit of IPv4, L2 and BGPv4 for small ISPs
- Many VPNs for corporates
- Over 100 big towers and several hundreds of APs

Tasks and goals

Transit and last mile services for ISPs:

- 1. Provide hundreds of L2 tunnels for Large ISP
- 2. Provide L3 transit and BGPv4 transit for several smaller ISPs
- 3. Separate transit IPv4 traffic from our own IPv4 traffic

Internet and voice services for end users:

- 4. Provide VPN site to site tunnels for customers between branches. Point to point, point to multipoint.
- 5. Separate Voice, Internet and Management traffic and routing

Task 1 (solution: eoip, l2tp, vlans - ?)

1. Provide hundreds of L2 tunnels for Large ISP (last mile)

Task 1

1. Provide hundreds of L2 tunnels for Large ISP (last mile)

Task 2 (solution: static routes, ospf - ?)

2. Provide L3 transit(last mile) and BGPv4 transit for several smaller ISPs

Task 2

2. Provide L3 transit(last mile) and BGPv4 transit for several smaller ISPs

Task 4 (solution: eoip, I2tp, ipip, gre, pptp, ipsec - ?)

4. Provide VPN site to site tunnels for customers between branches. Point to point, point to multipoint

Task 4

4. Provide VPN site to site tunnels for customers between branches. Point to point, point to multipoint

Task 3,5 (solution: different routers, PBR - ?)

- 3. Separate transit IPv4 traffic from our IPv4 customers
- 5. Separate Voice, Internet and Management traffic and routing

Task 3,5 (solution: different routers, PBR - ?)

- 3. Separate transit IPv4 traffic from our IPv4 customers
- 5. Separate Voice, Internet and Management traffic and routing

MPLS is the solution

One common, vendor-independent, strong technology for tunnels = MPLS

P and PE routers

Cisco, Juniper — not cheap at all Linux, BSD — no stable implementation Mikrotik — CCR routers

MPLS on Mikrotik (before we started ...)

Results of tests and case studies:

- Stable VPLS, MPLS switching, L2 tunnels

Presentations from MUMs of Tierry Wehr (2014), Tomas Kirnak (2013), Pat Harris (2013)

- Unstable VRFs?

http://forum.mikrotik.com/viewtopic.php?t=73820

Implementation output (... after we finished)

VPLS

- L2 tunnels are stable, both MP-BPG and LDP based
- Be careful with MTU on switches

VRF

- By itself is stable in latest RouterOS version (>6.5)
- PPPoE cannot bind to VRF dynamically → we use DHCP
- Traceroute inside VRFs not shown → we don't propogate TTL
- VRF route leaking issues → we use additional routers
- Route withdraw. Sometimes VRF has static/dynamic routes withdraw problem ... (we don't use dynamic routing between PE-CE). → we have connected routes mainly + work carefully with redistribution of static
- VRF BGP path selection has issues with choosing right BGP metric \rightarrow we use filter with distance manipulation

MPLS topology

MPLS topology

Let's implement MPLS

Steps:

- 1. Bring customer on L2 to PE router
- 2. OSPF on Distribution/Core layer
- 3. LDP activation between PE, P routers, MPLS tags
- 4. iBGP, Route reflectors configuration
- 5. MP-BGP activation
- 6. L2 VPLS configuration (LDP based)
- 7. VRF configuration(L3 tunnels, isolation of traffic)

Step 1 — L2 bridging

Bring customer on L2 to PE router

Advantages:

- no need for /30 networks, can be used /24 for all users on one PE
- each customer appear on PE as interface, so we can put him to VPLS or VRF
- different VLANs for different services
- VRF works fine in that setup :-)

Disadvantages:

- Large L2 domains (broadcasts)
- CPEs on one L2 line (can see each other)

ToDo:

- No «default forward» on wireless
- Port isolation (PVLAN isolated) on switches, split horizon on bridges

Step 2 — OSPF in core/distribution

Step 3 — LDP activation

Step 3 — MPLS tags

Step 4 — Address family

MP-BGP configuration

Step 5 — iBGP RR

	☐ ¶ Refr	resh Refresh All Resend	Resend All					Fino
								FING
Na Instance		Remote AS TCP MD5 Key	Nexthop Choice	Multihop	Route		Remote ID	Uptime
R default	172.16.0.4	37675 *****	default	no	yes	255	172.16.0.4	
₹ T. default	172.16.0.5	37675	default	no	yes	255	172.16.0.5	
R P default	172.16.0.6	37675	default	no	yes	255	172.16.0.6	
♠ M default	172.16.0.7	37675	default	no	yes	255	172.16.0.7	
R default	172.16.0.8	37675	default	no	yes	255	172.16.0.8	
🕏 N default	172.16.0.9	37675	default	no	yes	255	172.16.0.9	AF
🕏 T. default	172.16.0.10	37675	default	no	yes	255	172.16.0.10	
🕏 D default	172.16.0.11	37675	default	no	yes	255	172.16.0.11	
🕏 S. default	172.16.0.12	37675	default	no	yes	255	172.16.0.12	
🕏 H default	172.16.0.14	37675	default	no	yes	255	172.16.0.14	
🕏 L. default	172.16.0.15	37675	default	no	yes	255	172.16.0.15	
RC default	172.16.0.16	37675	default	no	yes	255	172.16.0.16	
🤁 W default	172.16.0.17	37675	default	no	yes	255		
🤁 W default	172.16.0.18	37675	default	no	yes	255	172.16.0.18	
RH default	172.16.0.19	37675	default	no	yes	255	172.16.0.19	
RL. default	172.16.0.20	37675	default	no	yes	255	172.16.0.20	
RD default	172.16.0.21	37675	default	no	yes	255	172.16.0.21	
R P. default	172.16.0.22	37675	default	no	yes	255	172.16.0.22	
🕏 V. default	172.16.0.23	37675	default	no	yes	255	172.16.0.23	
K default	172.16.0.24	37675	default	no	yes	255	172.16.0.24	
C default	172.16.0.25	37675	default	no	yes	255	172.16.0.25	
RL. default	172.16.0.26	37675	default	no	yes	255	172.16.0.26	
S default	172.16.0.27	37675	default	no	yes	255	172.16.0.27	
N default	172.16.0.29	37675	default	no	yes	255	172.16.0.29	
C default	172.16.0.30	37675	default	no	yes	255	172.16.0.30	
E default	172.16.0.31	37675	default	no	yes	255	172.16.0.31	
R P. default	172.16.0.32	37675	default	no	yes	255	172.16.0.32	
N default	172.16.0.33	37675	default	no	yes	255	172.16.0.33	
RF. default	172.16.0.34	37675	default	no	yes	255	172.16.0.34	
RF. default	172.16.0.35	37675	default	no	yes	255	172.16.0.35	
R A default	172.16.0.36	37675	default	no	yes	255	172.16.0.36	
N default	172.16.0.45	37675	default	no	yes	255	172.16.0.45	
O default	172.16.0.46	37675	default	no	yes	255	172.16.0.46	
N default	172.16.0.47	37675	default	no	yes	255	172.16.0.47	
C default	172.16.0.48	37675	default	no	yes	255	172.16.0.48	
A default	172.16.0.49	37675	default	no	yes	225	172.16.0.49	
S default	172.16.0.43	37675	default	no	no	255	172.16.0.45	

Step 6 — VPLS setups

Step 7 — VRF setup

Route Lis	st								□×
Routes	Nexthops	Rules	VRF						
+ -	+					Find	ind INTERNET		₹
	Dst. Address		Α.	Gateway	Distance	Routing Mark /	Pref. Source	Comment	-
DAb	0.0.0.0/0			172.16.0.6 recursive via 10.254.0.113 vlan-0190-Panorama	200	INTERNET			
DAb	▶ 10.55.56.	0/24		172.16.0.12 recursive via 10.254.0.113 vlan-0190-Panoram	200	INTERNET			
DAb	41.78.18 4	4.0/30		172.16.0.6 recursive via 10.254.0.113 vlan-0190-Panorama	200	INTERNET			
DAC	▶ 41.78.184	4.28/30		vlan-222-Wearne-Cresta-Internet reachable	0	INTERNET	41.78.184.29		
DAb	▶ 41.78.184	1.32/30		172.16.0.51 recursive via 10.254.0.113 vlan-0190-Panoram	200	INTERNET			
DAb	▶ 41.78.184	4.56/30		172.16.0.21 recursive via 10.254.0.113 vlan-0190-Panoram	200	INTERNET			
DAb	41.78.18	4.60/30		172.16.0.21 recursive via 10.254.0.113 vlan-0190-Panoram	200	INTERNET			
DAb	41.78.18	1.72/30		172.16.0.26 recursive via 10.254.0.113 vlan-0190-Panoram	200	INTERNET			
DAb	41.78.184	4.76/30		172.16.0.26 recursive via 10.254.0.113 vlan-0190-Panoram	200	INTERNET			
DAC	▶ 41.78.184	4.128/29)	vlan803_INTERNET_VRF reachable	0	INTERNET	41.78.184.129		
DAb	▶ 41.78.184	4.136/30)	172.16.0.21 recursive via 10.254.0.113 vlan-0190-Panoram	200	INTERNET			
DAb	41.78.18	4.140/30)	172.16.0.9 recursive via 10.254.0.113 vlan-0190-Panorama	200	INTERNET			
DAC	41.78.184	4.144/30)	vlan803_INTERNET_VRF reachable	0	INTERNET	41.78.184.145		
DAb	41.78.18	4.148/30)	172.16.0.5 recursive via 10.254.0.113 vlan-0190-Panorama	200	INTERNET			
DAb	41.78.184	1.152/29)	172.16.0.12 recursive via 10.254.0.113 vlan-0190-Panoram	200	INTERNET			
DAb	41.78.184			172.16.0.11 recursive via 10.254.0.145 vlan-0186-Randburg		INTERNET			
DAb	41.78.184			172.16.0.16 recursive via 10.254.0.113 vlan-0190-Panoram		INTERNET			
DAC	41.78.184	1.184/29)	vlan-4021-IntuateInternet reachable	0	INTERNET	41.78.184.185		
DAb	41.78.184	4.212/30)	172.16.0.24 recursive via 10.254.0.145 vlan-0186-Randburg	200	INTERNET			
DAb	41.78.184			172.16.0.19 recursive via 10.254.0.113 vlan-0190-Panoram		INTERNET			
DAb	41.78.18			172.16.0.5 recursive via 10.254.0.113 vlan-0190-Panorama		INTERNET			
DAb	41.78.18			172.16.0.51 recursive via 10.254.0.113 vlan-0190-Panoram		INTERNET			
DAb	41.78.18			172.16.0.51 recursive via 10.254.0.113 vlan-0190-Panoram		INTERNET			
DAb	41.78.18			172.16.0.21 recursive via 10.254.0.113 vlan-0190-Panoram		INTERNET			
AS	41.78.18			41.78.187.136 on INTERNET reachable vlan803 INTERN		INTERNET			
DAb	41.78.18			172.16.0.14 recursive via 10.254.0.113 vlan-0190-Panoram		INTERNET			
DAb	41.78.18			172.16.0.19 recursive via 10.254.0.113 vlan-0190-Panoram		INTERNET			
DAb	41.78.18			172.16.0.23 recursive via 10.254.0.113 vlan-0190-Panoram		INTERNET			
DAb	41.78.18			172.16.0.9 recursive via 10.254.0.113 vlan-0190-Panorama		INTERNET			
DAb	41.78.18)	172.16.0.5 recursive via 10.254.0.113 vlan-0190-Panorama		INTERNET			
DΔb	► 41 78 18 ⁶	216		172 16 0 9 recursive via 10 254 0 113 ylan-0190-Panorama	200	INTERNET			

Step 7 — VRF setup

Conclusion

Prerequisites

→At lease MTCINE training

Advantages:

- →Not expensive solid MPLS solution
- → Fast, reliable L2 tunnels
- →Use VRF if you have similar setup to ours
- →Smart routing and TE can be implemented

Disadvantages:

- → Not full L3 VRF features (route leaking, route withdraw)
- →Don't provide L3 site to site tunnels over MPLS yet

MPLS on practice

Thank you alex@skywire.co.za alex@isp-servis.cz