

Wireless High Performance

Andrea Grittini

Product Manager Wireless Division Wi4Net - Totalconn Mikrotik User Meeting Venice(IT) 20-21 February 2014

Wi4Net - Totalconn

- Mikrotik Italian distributor
- Training and Consulting
- Building Certified Devices for EU market
- Wireless distribution
- E-commerce Web site <u>www.wi4net.it</u>

ihop	Wi4Net Online Store	Offer of the week
Products Wi4Net	Search the product for Wireless here: if you do not find what you need, email us at info@wi4net.it.	UF-UMTS-ONYX3G
Products Mikrotik	•	UF-0W13-0N1X30
17/24GHz License free	Categories	
Indoor Access Point Router		C
Accessories		•
Power		€ 25.00
Antennas	WHINET	Add
Box	Products Wi4Net Products Mikrotik 17/24GHz License free	
Configurations & Support	Indoor Access Point Router	OmniTIKU-5HnD
Training Courses		
Solar Kit		

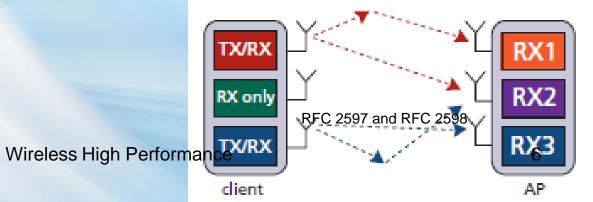
Andrea Grittini

- Graduated in Computer Science
- Working with wireless since 2003
- Startup of one of the first Italian WISP
- Mikrotik distributor since 2005
- Mikrotik Certified in MTCNA, MTCRE, MTCWE, MTCTCE
- More 10 trainings a year, with more than 60 graduates

Goal

Wireless New possibilities

Wireless Plan tools


Topics

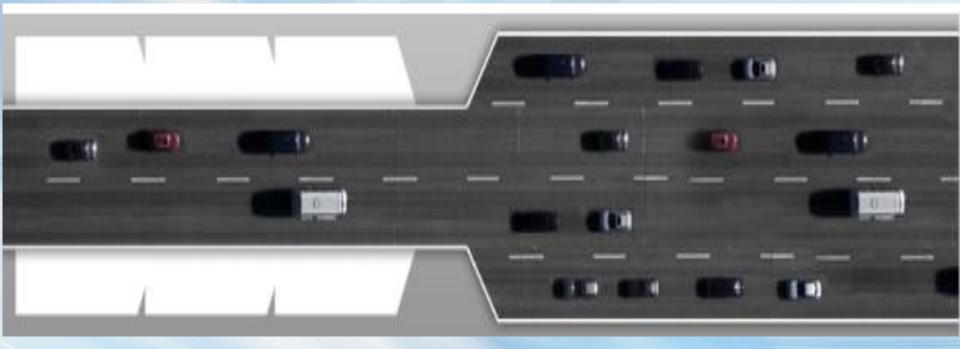
- MIMO & 802.11ac
- Our tests on 802.11ac
- Optimizing wireless projects:
 - Channel planning for indoor coverage
 - Indoor wireless levels
 - Outdoor link planning

Mimo 802.11n

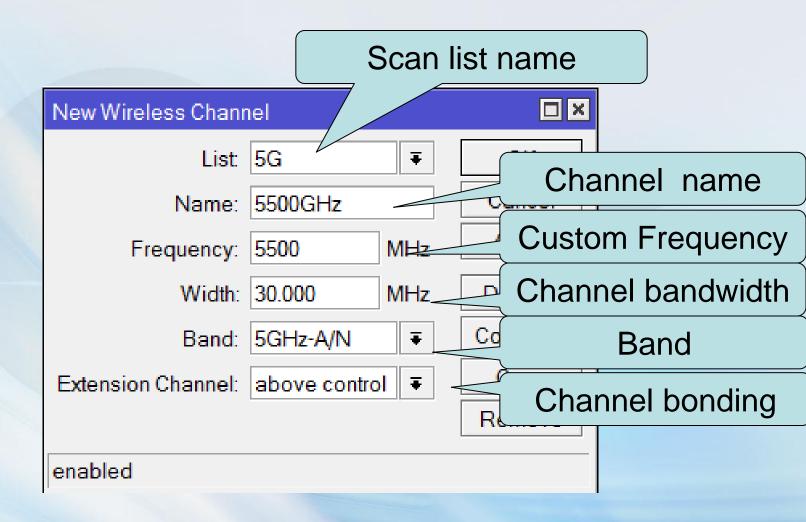
- MIMO is an abbreviation for Multiple-Input Multiple-Output, which refers to the ability of equipment to handle multiple data input and multiple data output operation.
- Wi-Fi 802.11n devices make use of multiple antennas to send and receive more than one communication signal **simultaneously**
- 2x2, 3x3 up to 4x4 streams

802.11ac is the future

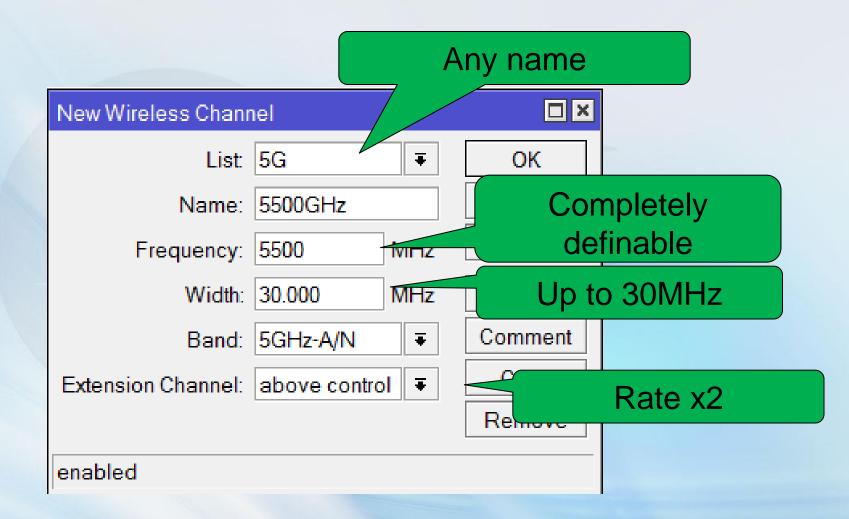
- Broadcom chipsets supports 80Mhz 802.11ac
- Qualcomm/Atheros supports 80Mhz 802.11ac
- Openwrt implements the 20/40/80Mhz driver
- Mikrotik ? NV2, routeros and routerboards will be a very strong «plus».



- 40MHz = 2 aggregated 20MHz channels
- takes advantage of the reserved channel space through bonding to gain more than double the data rate of 2 20MHz channels



- 50MHz = 2 aggregated 25MHz channels
- More than 300Mbps aggregated throughput



With Custom Channel

Custom Channel

802.11ac 80MHz

802.11ac

Bandwidth	20 MHz	40 MHz	80 MHz	160 MHz
# of Spatial Streams				
1	86.7 Mbps	200 Mbps	433.3 Mbps	866.7 Mbps
2	173.3 Mbps	400 Mbps	866.7 Mbps	1733 Mbps
3	288.9 Mbps	600 Mbps	1300 Mbps	2340 Mbps
4	346.7 Mbps	800 Mbps	1733 Mbps	3466 Mbps
5	433.3 Mbps	1000 Mbps	2166 Mbps	4333 Mbps
6	577.8 Mbps	1200 Mbps	2340 Mbps	5200 Mbps
7	606.7 Mbps	1400 Mbps	3033 Mbps	6066.7 Mbps
8	693.3 Mbps	1600 Mbps	3466 Mbps	6933 Mbps

MIMO and 802.11ac

	ΜΙΜΟ	802.11ac				
2x2 40MHz	300Mbps	400Mbps				
3x3 40Mhz	450Mbps	600Mbps				
2x2 50Mhz ROs	375Mbps	??				
	\sim					
+33%						
• In the same condition V						

802.11ac channels

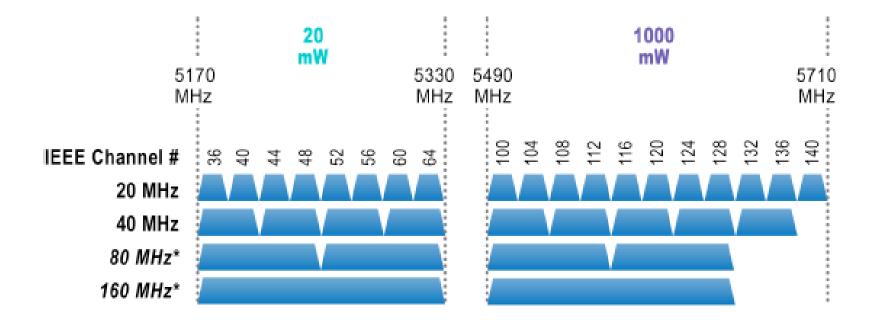
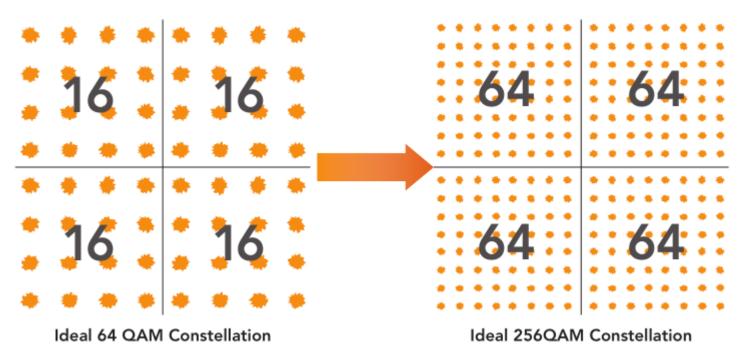


FIGURE • European channel allocations for 20/40/80/160 MHz


Problem: channels are often already busy !

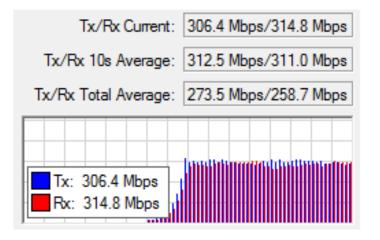
	Theoretical throughput for two Spatial Stream (in Mb/s)									
			20 MHz channels		40 MHz channels		80 MHz channels		160 MHz channels	
MCS index	Modulation type	Coding rate	800 ns GI	400 ns GI	800 ns GI	400 ns GI	800 ns GI	400 ns GI	800 ns GI	400 ns GI
6	64-QAM	3/4	117	130	243	270	526.6	585	1053	1170
7	64-QAM	5/6	130	144.4	270	300	585	650	1170	1300
8	256- QAM	3/4	156	173.4	324	360	702	780	1040	1560
9	256- QAM	5/6	N/A	N/A	360	400	780	866.6	1560	1733,4

Constellation

- 802.11ac protocol introduce the 256QAM modulation, in order to send more data at the same time
- Higher signal strength required !!

Our tests on 802.11ac radio

- 2 Compex WPJ433 board with 802.11ac mpcie 5 GHz radio
- 2 RB2011 to generate traffic on gbit port
- 80 MHz channel
- 2x2 MIMO transmission



Our Test on 802.11ac

20Mhz channel, P2P

80Mhz channel, P2P

Tx/Rx Current:	71.6 Mbps/72.0 Mbps
Tx/Rx 10s Average:	72.9 Mbps/74.2 Mbps
Tx/Rx Total Average:	63.9 Mbps/63.9 Mbps
Tx: 76.0 Mbps Rx: 72.0 Mbps	

With 80Mhz channel: 620Mbps (310+310) of real traffic

Same performance in lab and in a short range «real» installation We are actually testing long-range (some km) Packet latency (802.11) reasonable but high Wireless High Performance

802.11ac

Advantages

- Introduce 80Mhz channel width (up to 866Mbps)
- +33% in same condition
- Uses QAM256 and better aggregation protocol

Disadvantages

- Only 5GHz frequency (not suported on 2.4)
- Crowded frequency
- Higher signal strength to use QAM256

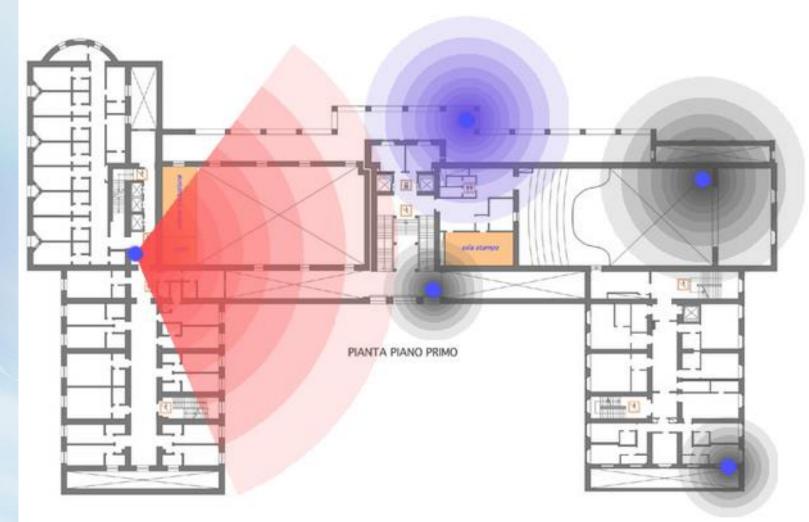
Wireless Planning and Optimization tools

Optimization tools

Installers needs to grant to their clients that the **installation** they are proposing will be **successful**.

We developed algorythms useful for:

- Channel planning for 2.4G and 5G, mainly for indoor
- Wireless coverage planning at 2.4GHz and 5GHz
- Complete link planning, outdoor


Channel planning

- Assignment of different frequencies to cells is an usual problem of wireless planning
- Artificial Intelligence techniques are useful to plan bandwidth usage

Min-Max algorithm, with specialized heuristic function

- List of possible channels
- List of APS and their positions
- Rules: wider channels are better, nearest machines needs far channels

Some result: 2 + 5Ghz

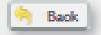
Name 🔻	Enabled	Channel
2ghz sector	Yes	2 - 2417/20Mhz
5ghz spot	Yes	44 - 5220/20Mhz
5ghz spot2	Yes	42 - 5210/40Mhz
5ghz spot3	Yes	44 - 5220/20Mhz
5ghz spot4	Yes	

Name 🔻	Enabled	Channel
2ghz sector	Yes	1 - 2412/20Mhz
5ghz spot	Yes	152 - 5760/40Mhz
5ghz spot2	Yes	50 - 5250/40Mhz
5ghz spot3	Yes	42 - 5210/40Mhz
5ghz spot4	Yes	58 - 5290/40Mhz

- First image: starting situation
- Second image: AI engine proposes a (good)solution
- No channel overlaps

More complex: 2Ghz + overlap

Name 🔻	Enabled	Channel
2ghz sector	Yes	1 - 2412/20Mhz
2ghz spot	Yes	3 - 2422/20Mhz
2ghz spot2	Yes	4 - 2427/20Mhz
2ghz spot3	Yes	7 - 2442/20Mhz
2ghz spot4	Yes	8 - 2447/20Mhz


Name 🔻	Enabled	Channel
2ghz sector	Yes	1 - 2412/20Mhz
2ghz spot	Yes	13 - 2484/20Mhz
2ghz spot2	Yes	9 - 2452/20Mhz
2ghz spot3	Yes	12 - 2467/20Mhz
2ghz spot4	Yes	5 - 2432/20Mhz

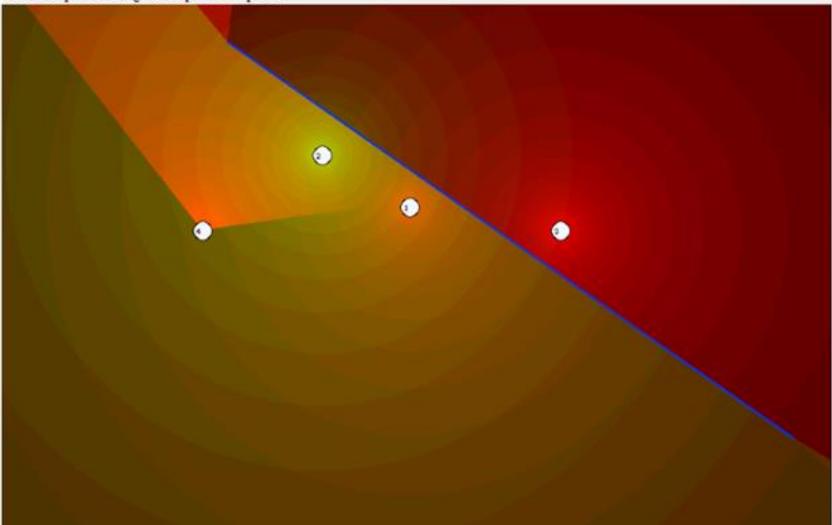
Extimated band

- We cannot avoid channels overlap
- Overlaps are limited as more as possible, and only between «far» routers
- % of real bandwidth usable can be computed («layer» is referred to different floors for palaces)

Channels - AP band overlaps								
Overlap	AccessPoint	Freq. from	То	Band %	AccessPoint	Freq. from	То	Band %
Same layer	5ghz spot3	2467	2487	92.5	5ghz spot	2484	2504	92.5
Same layer	5ghz spot2	2452	2472	87.5	5ghz spot3	2467	2487	87.5

Ray tracing algorythms:

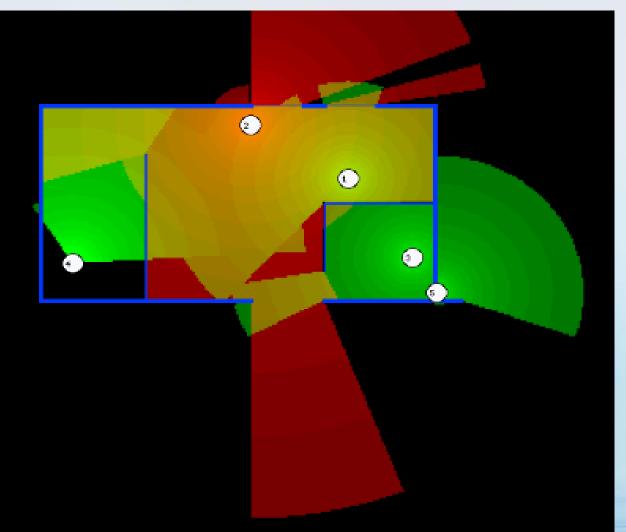
- Purpose: plan rough indoor coverage in complex environments (walls/reflections)
- Map is threated as bitmap: computation proceed with interlaced raster (like image on a TV screen).
- Walls and AP's are defined using vector graphics.


Simulation

- Model: «ray tracing for lights» similar to CAD rendering
- Access Points are «sources»
- Signal level for each point is computed considering all walls and Aps
- Attenuation and reflection model is different than the ones used for light
- **Slow**: simulation can require from few seconds to some minutes
- Accurate: wireless level is accurate and precise

4 APs: 1: prova 2: 5gant 3: prova 4: prova

Example: a building

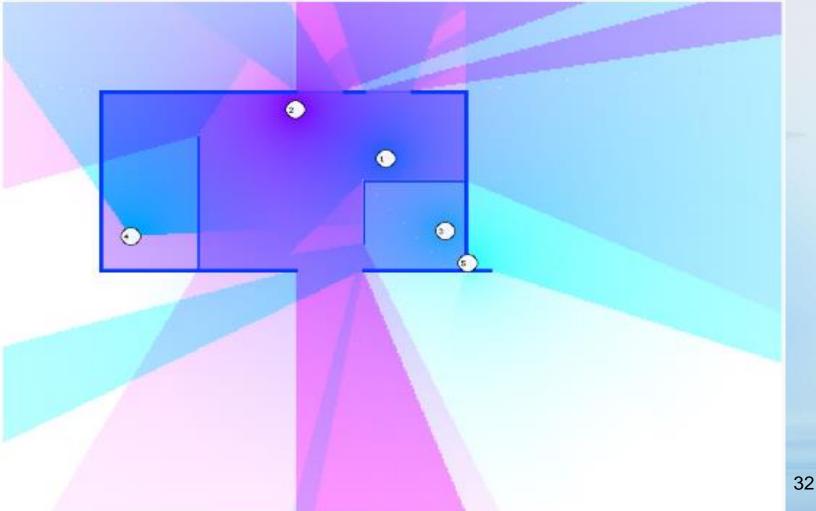


Minimum signal level is set to -94dBm

Simulation includes walls and windows

Punctual 2G/5G levels can be read on Mousemove

Color change Level set to 5Db

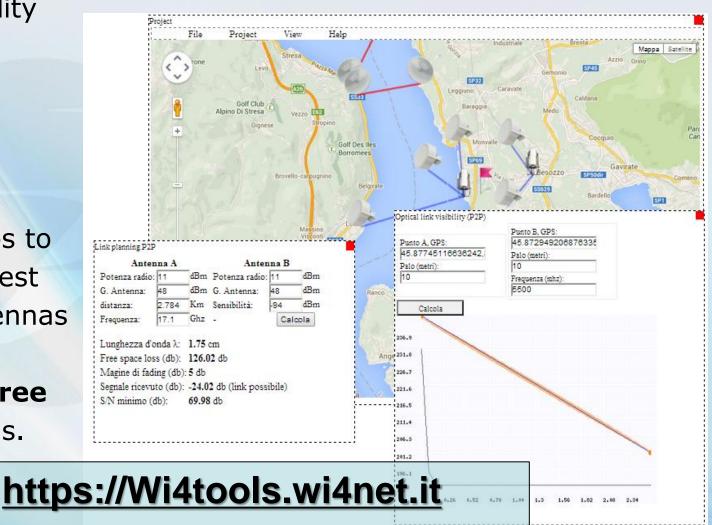


A look outside the building MAINET

Minimum level raised to -120Dbm, reversed colors

2G: -110, 5G:-95

5 APs: 1: 5ghz spot 2: 2ghz spot 3: 5ghz spot3 4: 5ghz sector 5: 5ghz spot2



Outdoor link planning

For outdoor planning you need:

- Optical visibility check
- Link signal planning
- Editable maps to dinamically test sites for antennas

Try online our **free** planning tools.

Thanks for your attention !

Visit our stand Wi4Net Totalconn <u>www.wi4net.it</u> Info@wi4net.it

Andrea.Grittini@wi4net.it

