

Controlling Network Traffic using MikroTik RouterOS

MikroTik User Meeting Venice 2014

By Ron Touw LinITX, England

- My background?
- RF Wireless Engineering for UK Government for 25 years.
- Training certifications from companies such as Marconi, Hewlett-Packard, Rohde & Schwarz, Microsoft, Ruckus, Meru.
- User of MikroTik since 2006
- Certified Consultant and Trainer since 2009.

Who are LinITX?

- Largest MikroTik Distributor in UK
- Largest number of MikroTik Certified
 Consultants in one company in the UK
- Certified MikroTik Training Centre
- Provide Consultancy and Third Line Support

This sound familiar?

- Start up : few customers, everyone is happy.
- Initial growth: more new customers, but old customers no longer happy "It used to be much faster".
- Even more growth: Now everyone is unhappy. "If there was a better ISP around here, I would have moved to them by now". ☺

Solution?

- Buy more bandwidth!
- Thank you for listening!

Reality?

- Buying more bandwidth is not always the available solution
- Bandwidth' can be very expensive.
- E.g. Guernsey C&W fibre pricing:
 - 2MB €6,800 per annum
 - 40MB €77,500 per annum

Real Solution?

- Simple Use less bandwidth!
- But how?
- Managing users' usage by:
 - Identifying and allowing 'good traffic'
 - Identifying and restricting 'bad traffic'
- Identify at edge, mark with DSCP
- Apply priorities along the whole traffic route inside network, including wireless links

Stage1: Identifying

• "...when you have eliminated the impossible, whatever remains, however improbable, must be the truth?"

('Sherlock Holmes' / Arthur Conan Doyle)

- Identify what you immediately know to be good or bad traffic
- Analyse what is left good/bad?
- Anything unknown / left over, assume is bad

Stage2: Marking

- Use Connection Tracking to your advantage!
 - Detect traffic by some uniqueness
 - Apply 'Connection Mark'
 - Apply 'Packet Mark'
 - Change DSCP value
 - Add Remote IP to 'Address List' to reduce detection requirement for similar traffic from other clients' connections

Stage3: Managing

- Queue Tree using PCQ and SFQ queue types
- (Understanding the 'Queue Size')
- Utilise bursting for 'Interactive' traffic (HTTP)
- Higher priority for small 'TCP ACK' packets
- Use priorities on any wireless links
- Use NV2 with built-in QoS ©

Stage4: Monitoring

- Applying Traffic Management is not a 'one off' solution
- Constant pro-active monitoring and maintenance required
- React quickly to customer 'complaints' of any slow down after applying traffic management
- Identify their traffic needs and identify any good traffic

Identifying

Port	Protocol	Comments
20/21	tcp	FTP
53	tcp/udp	DNS
22	tcp	SSH,SFTP
80	tcp	HTTP
123	udp	SNTP
443	tcp	HTTPS
500	udp	IPSec
1701	udp	L2TP
1723	tcp	PPTP

Problems of identifying **too** simply!

- E.g. HTTP on Port 80 and HTTPS on 443. Not ONLY used by HTTP traffic!
- Therefore it cannot be assumed traffic is good just because of the protocol and port!
- Solution? Layer 7!
- However, Layer 7 is CPU intensive ⊗
- But, why is Layer 7 processing difficult for CPU?

Layer 7

- Layer 7 is the payload part of packet, the user data.
- Layer 7 detection thus means we have to open every single packet and inspect the payload itself.
- Layer 7 mangle rules on RouterOS, takes the first 10 packets of any new connection, or the first 2KB.
- It then stores this in a buffer and begins to match our 'regex string' against this user data.
- But what if packets are small? It is possible that after say 9 packets, it is only the 10th packet that is a match.
- What happened to the first 9 packets?
- In this example, only the 10th packet triggered an action, the previous 9 – nothing happened.
- Therefore it is not recommended to take direct action on packets, but instead use address lists or connection mark

Using Mangle rules effectively

Jump to 'user-created' chains then process there

```
/ip firewall mangle
add action=jump chain=forward comment="Detect all
ICMP traffic" disabled=no jump-target=ICMP_Chain
protocol=icmp
```

 Use Firewall Connection Tracking to your advantage by using connection marks - yes, even with so-called 'connection-less' protocols ©

Using Mangle rules effectively

- Ensure that high volume / high demand traffic is detected in higher up rules, move lower traffic demand rules further down – lowers CPU usage
- Reduce CPU by only testing a destination IP once by using address lists – therefore testing anyone's connection to that IP only the once ☺ - But how?

Using Layer 7 effectively

Using Layer 7 effectively

- 1. Inspect first packet of a connection but only if not already marked
- 2. If positively identified as a specific protocol

 add destination IP to a long term dynamic
 address list
- 3. This destination server will not need inspecting again for a long time for any other connections from any other clients. ©
- Therefore if it is a popular destination, it will only need testing once!

Using L7 rules effectively

```
/ip firewall mangle
add action=jump chain=forward comment="Jump to HTTP
detection for all port 80 traffic if not examined
before" disabled=no jump-target=Test4WebSite
protocol=tcp connection-mark=no-mark src-port=80
```

- Test for TCP port 80 and jump to the L7 HTTP detection chain 'Test4WebSite', but only if NOT tested before (connection-mark=no-mark)
- 'no-mark' is a special RouterOS reserved name meaning that no mark has yet been applied

Using L7 rules effectively

```
add action=add-src-to-address-list address-list=WebServer address-list-timeout=4w2d chain=Test4WebSite comment="Detect if traffic is HTTP. Add to address list WebServer if it is"

layer7-protocol=http-fast src-address-list=!WebServer
```

- Add IP to address list 'WebServer' for a month (4w2d) if:
 - a) it's not already in the address list Webserver &
 - b) the L7 rule 'http-fast' successfully matched for a 'http' header
- Address List 'WebServer' will then contain a list of every web server IP visited by clients

Using L7 rules effectively

add action=mark-connection chain=Test4WebSite
new-connection-mark=WebServer src-addresslist=WebServer

add action=mark-packet chain=Test4WebSite connection-mark=WebServer new-packet-mark=WebServer passthrough=no

 In the user defined chain, mark connections and then mark packets if the source IP is in address list 'WebServer'

L7 Packet Sniffing

- RouterOS examines the payload (the data inside a packet) for the first 10 packets or 2KB whichever is the smaller
- Cannot detect any strings inside SSL connections (obviously! – it's encrypted!)
- Look for initial certificate handshake instead ©

```
/ip firewall layer7-protocol
add name=validcertssl regexp="^(.\?.\?\\x16\\x03.*\\x16\\x03|.\?.\?\\x01\\x03\\x01\\?.*\\x0b).*(thawte|equifax secure|rsa data security, inc|verisign, inc|gte cybertrust root|entrust\\.net limited)"
```


Layer 7 Filter Resources

- MikroTik of course!
- http://wiki.mikrotik.com/wiki/Manual:IP/Firewall/L7
- http://www.mikrotik.com/download/l7-protos.rsc
- http://en.wikipedia.org/wiki/Regular_expression
- http://www.grymoire.com/Unix/Regular.html
- http://gskinner.com/RegExr/
- If all else fails packet sniff and roll your own ☺

Packet Capture

- Solutions:
 - RouterOS 'Tools Packet Sniffer'
 - RouterOS Mangle rule action 'sniff TZSP'
 - WireShark

Remote Packet Capture

Filter on protocol 'tzsp'

Examine data for potential L7 rule

Layer 7 Regex

- () groups logical 'matches' together
- \ is used to 'escape' special characters such as ?*+|^\$
- [xyz], [0-9] [a-z] match any of the enclosed characters once
- ^ string required to match, occurs at start of packet
- \$ string required to match, occurs at end of packet
- . (fullstop) match one, but **any** single character
- ? Match zero or 1 positions of the preceding string

Layer 7 Regex

- * Match zero or more positions of the preceding string
- + Match 1 or more positions of the preceding string
- | (pipe) denotes 'or', match either the left or the right part
- [\x09-\x0d -~] match on all printable ASCII characters & space
- [\x09-\x0d] match a TAB, LF, Vert Tab, FormFeed, CR or space
- [!-~] match non-whitespace printable characters

Example Layer 7 Regex

• Testing for HTTP:

```
http/(0\.9|1\.0|1\.1) ([1-5][0-9][0-9]|post) [\x09-\x0d - ^{*} http/[01]\.[019]
```

- Look for a match of 'http/0.9' or 'http/1.0' or 'http/1.1' (note the trailing space)
 - Also, RouterOS L7 is not case sensitive!
- Then, match a 3 digit number between 100-599 or the word 'post'
 - (the '|' splits the regex in two 'or' halves)
- Followed by any amount of characters, then 'http/ 0.9', 'http/1.0' or 'http/1.1' (note the space again)

Reduce Duplicating Effort

- Mark Traffic at the edge of network ('change DSCP')
- Apply QoS control throughout network ('set priority')
- Packet marks do not survive beyond router
- So Use the DSCP/TOS header byte! ©
- But what value to use?

DSCP/TOS Header

- DSCP+TOS field = depending on the RFC, field is either 6, 7 or 8 bits. (See RFC791/RFC795/RFC1349), but...
- The 3 Most Significant bits → 'IP Precedence', ie QoS
 - 111 Network Control
 - 110 Internetwork Control
 - 101 Critic/ECP
 - 100 Flash Override
 - 011 Flash
 - 010 Immediate
 - 001 Priority
 - 000 Routine

Once again - Reduce Effort!

- Let MikroTik to make it easy for us
- Packets marked using the 3 bit 'IP
 Precedence' of the DSCP value allow all
 Internal Routers and wireless links to use this:

NV2 & DSCP/Priority Mapping

3 MSBs of DSCP Value	DSCP Value	802.1D Priority #	NV2 Priority Queues		
			8 Qs	4Qs	2Qs
111 000- 111 FFF	56 - 63	7	7	3	1
110 000- 110 FFF	48 - 55	6	6	3	1
101 000- 101 FFF	40 - 47	5	5	2	1
100 000- 100 FFF	32 - 39	4	4	2	1
011 000- 011 FFF	24 - 31	3	3	1	0
010 000- 010 FFF	16 - 23	2	2	1	0
001 000- 001 FFF	8 - 15	1	1	0	0
000 000- 000 FFF	0 - 7	0 (default)	0	0	0

Priorities on NV2

- MikroTik NV2 wireless protocol has QoS already fully integrated © (IEEE 802.1D-2004)
- See presentation from Lutz Kleeman
- http://mum.mikrotik.com/presentations/US13/lutz.pdf

MPLS QoS

- EXP "Experimental bits"
- 3 bits in length commonly used for QoS
- Set desired priority on Edge ('Ingress Router')

MPLS Header							
Label Value	Exp	Stacking Bit	TTL				
20 bits	3 bits	1 bit	8 bits				

- MPLS automatically sets priority of packet from the 'EXP' bit value on all MPLS internal routers, therefore NV2 wireless will know priority to set for each packet ☺
- http://wiki.mikrotik.com/wiki/Manual:MPLS/ EXP bit behaviour

MPLS QoS

- Once packet is 'inside' MPLS switching system, it bypasses prerouting, forward and postrouting chains.
- Therefore 'mangling' is limited.

VLAN QoS

- VLANs also have a field to mark QoS.
- VLAN Tag added to packets contains a 3 bit 'User Priority' field or 'vlan-priority' field

http://wiki.mikrotik.com/wiki/Manual:Interface/Bridge

Setting Priorities

E.g. set priority of packets from DSCP MSB 3 bits...

```
/ip firewall mangle
add action=set-priority chain=forward \
new-priority=from-dscp-high-3-bits
```

- MPLS 'EXP field' in label will then be automatically set to correct priority value (0-7) when MPLS label is 'popped' / attached in the ingress router ☺
- VLAN 'vlan-priority' (user priority) field will be automatically set to the calculated priority value
 - (VLAN Priority on **bridge filter** rules are unable to use DSCP MSBs only 'from ingress' or set 'priority=0-7' is available!).

Queue Types – In Detail

- RouterOS has 4 queue types:
 - FIFO Simple First In First Out (Bytes or Packets)
 - RED Random Early Detect (or Drop)
 - SFQ Stochastic Fairness Queuing
 - PCQ Per Connection Queuing (MikroTik Proprietary)
- Also, each queue type has 2 major characteristics:
 - Shaper (where packets are dropped to reduce traffic)
 - Scheduler (where packets are temporarily delayed)
 - (More on shaper/scheduler characteristics later)

FIFO — First In First Out

- Behaviour: First packet in is outputted, subsequent packets wait in buffer until previous packet has left buffer.
 Once buffer is full, all new incoming packets are dropped.
- Two types of FIFO
 - —BFIFO queue size is a physical buffer size (kb)
 - —PFIFO queue size is a physical number of packets (e.g. default, default-small, ethernet-default – used in PPP, DHCP, Hotspot etc)
- NOT recommended for very congested links as once queue is full, ALL traffic is dropped

Random Early Detect

- Behaviour: Similar to FIFO, except randomly starts dropping packets before queue is full.
- Queue 'dropping' properties mainly controlled by max/min threshold values
- Recommended for congested links as once queue is **nearly** full, traffic is more fairly dropped.
- Works in a softer way than FIFO queues.

Stochastic Fairness Queuing

- Behaviour: Similar in some ways to PCQ except with very limited control over how sub-queues are created. Divides the traffic up into 1024 sub-queues based on SRC/DST IP and Port. Total size of SFQ Queue is only 128 packets.
- Round Robin algorithm then distributes 'Allot' amount of traffic into each of the multiple sub-queues
- Hash value recalculated every 'Pertub' time.
- Works in a fair/equal way on congested links.

Per Connection Queuing

PCQ is very well documented by Janis Megis and Velans Riyadi. Not going over same material! See:

http://mum.mikrotik.com/presentations/US09/megis qos.pdf http://mum.mikrotik.com/presentations/HR13/valens.pdf http://mum.mikrotik.com/presentations/ID13/valens.pdf

 But is PCQ best? (Answer: It depends on how it is configured!)

Per Connection Queuing

- Behaviour: Similar in some ways to SFQ except with much more detailed control over how sub-queues are created. Divides the traffic up into multiple sub-queues based on single or multiple SRC/DST IPs and/or Ports.
- Works in a fair/equal way on congested links.
- Also permits sub-queue speed limits.

Choosing Queue size?

- All queues very nearly work the same until there is congestion.
- If too small size, packets are very quickly dropped and high packet drops – however, low latency
- If too large size, packets are delayed leaving router and latency will be poor however there is less packet loss (but not good for TCP as it reduces speed to compensate)
- Choice of queue size is therefore important and usually a compromise!
- 'default-small' is 10 (= low latency / higher packet loss)
- 'default' is 50 (higher latency but lower packet loss)

Queuing – 100% Shaper

• 100% Shaper

- all new packets are dropped once 'max-limit' is reached.
- —Size of queue is **zero**. It cannot hold **any** packets without dropping them, however **latency is low**.

Queuing – 100% Shaper

- Assume max-limit is '100'
- 100% shaper has no queue size
- Therefore packets are dropped when it reaches 100.
- In this example about 22% is dropped
- ▶ Latency is low ☺

Queuing – 100% Scheduler

100% Scheduler

- —Packets queued when 'max-limit' reached.
- Chose size of queue to hold correct number of packets, to delay their departure from the interface long enough but latency is higher. ☺
- —When queue is full, packets are dropped.

Queuing - 100% Scheduler

- Assume max-limit is '100'
- queue size is unlimited
- Therefore **no** packets are dropped when it reaches 100.
- In this example 39% are delayed once, 11% delayed twice
- Latency is high ⊗

BFIFO/PFIFO Queue Size?

- Shaping? Or Scheduling? Which is best?
- Both Shaping AND Scheduling!
- Shaping/scheduling only happens when buffer is full
- The larger the queue size, the more delay that can occur
- My advice for size? Seriously it's up to you! © YMWV (Your Mileage Will Vary!) But with high throughput (100MBps+) 10-50 is too small! Try values ≥100

Low Latency, Higher packet loss, Good for VOIP

Higher Latency, Lower packet loss, Good for video streaming

PCQ Queue Size?

- MikroTik recommend PCQ sub-queue to be approx 10-20 packets per client connection (ie per sub-queue). This offers a good balance between shaping and scheduling of packets.
- E.g. A network has 350 clients, although it is observed that there is only a maximum of 175 client connections of the type captured by a particular PCQ Queue at any one time. Therefore:
- One could set 'Total Limit' to 7000 (350 clients x 20 packets per client) and 'Limit' to 40 (7000/40=175)

PCQ Queue size?

- So how to know what packet sizes to allocate?
- Time for some Math's as it depends on number of client connections:
- Limit ("pcq-limit") = max number of packets in one sub-queue
- Total Limit ("pcq-total-limit") = max packets in all sub-queues
- Max quantity of sub-queues = (Total Limit ÷ Limit)
- ∴ Default is 2000 ÷ 50 = only 40 active connections maximum! ⊗

Default Queue Values

- Is MikroTik always correct with their default values?
- Do MikroTik really know your network? No.
- Do MikroTik fully understand your traffic? No.
- So how can the defaults ALWAYS be right for you?
- Well obviously they can't... So...
- Change them!
- Also, in v6 you can also control the default queues! ©

Dynamic queue types

Chose your default queue...

Notes / ToDo

 Packets that carry priority, mangle and "action=from ingress" – double sanity check into difference in priorities between ordering of CoS values 0,1,2 and actual priorities 0,1,2 in RouterOS!

Contact Details

Ron Touw - MikroTik Trainer & Consultant

LinITX

Tel: +44 1449 724250

VOIP: sip:contact@linitx.com

IRC: irc.z.je #routerboard

Email: shop@linitx.com

WWW: http://linitx.com

Materials Copyright

•Ron Touw of LinITX hereby acknowledges that some of the material contained within this presentation contains copyrighted images and descriptive text belonging to Mikrotīkls SIA.

