By Dennis Burgess

OVERVIEW

- DDOS Attacks
- Client Isolation
- Network Security

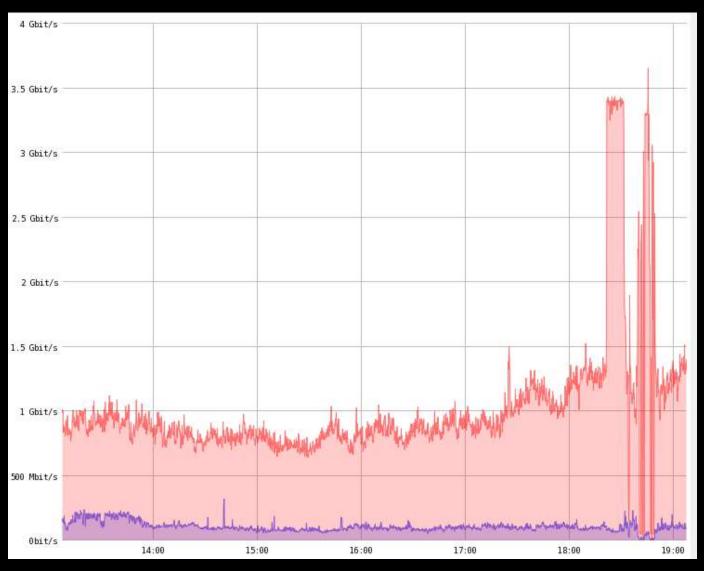
- Common Types of DDOS
 - DNS Amplification
 - Due to Open DNS Resolvers
 - These are DNS servers that respond to anyone for any request.
 - Every MIkroTik that has "Allow-Remote-Requests" turned on is a potential attack vector
 - Attackers like this; it's a 1:179 bandwidth amplification factor
 - NTP Amplification
 - Open NTP servers
 - Attackers have up to 1:556 bandwidth amplification factor
 - There are others, these are the most common!

DNS Amplification

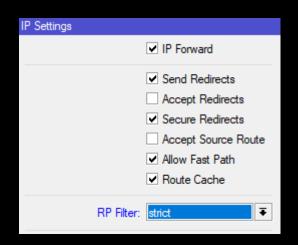
- How does this work
- Requires Open DNS Recursive resolver
 - Recursive resolver, will go out and find what the answer is, add the answer to its cache and then return the result to the client.
 - non-authoritative answer it gives an answer when its actually not the server responsible.
 - When you check the "allow remote requests" in IP→ DNS in RouterOS, without any rules, that creates a open DNS recursive resolver. I.e. any public IP on that box will respond to any DNS request.

DNS Amplification

- How does this work
- Attacker
 - Uses his botnet -- Collection of workstations/devices that he has control of.
 - Sends Spoofed IP packets to open DNS resolvers.
 - The spoofed IP is the attacked IP.
 - The Open DNS servers, then respond with the correct answer but seeing that the packet came from the attacked IP (spoofed IPs), the response goes to the attacked IP
 - Many times, a 60-70 byte request can generate many return packets, causing high pps and bandwidth inbound.


- GOALS for DDOS
 - Take services off-line
 - •Fill the pipe so that the server or client is off-line
 - No bandwidth for real world application
 - •High latency, services off-line.

•GOALS for DDOS


- •Gamers
 - Lots of gamers have found that using DDOS against a fellow gamer can cause high latency
 - •Thus they can win the prize if their fellow gamers have high latency.
 - Quite a few of League of Legends users do this!

DDOS

- •Typically large scale, can be 100meg to hundreds of Gigabit's
- Typically need to be able to weather the storm
- •Need enough bandwidth to absorb the attack and block it from getting in.
- •Rules can include high PPS going to an individual IP address

- How to Stop DDOS Attacks
 - First line of defense is to have enough bandwidth
 - 5 gig attack hits a 1 gig port, the port is swamped, and it has succeeded.
 - Second is Black Hole Servers
 - BGP process to send a individual /32 to black hole
 - Back holes route, to that individual /32 dropping traffic before it gets to your edge device.
 - This prevents that /32 from getting out but prevents traffic from filling your entire pipe.
 - This in effect has done what the attacker wants, to take the customer off-line.
 - Third is BCP 38
 - Prevent spoofed packets form leaving your network.
 - If everyone did this, it would make these types of attacks uncommon.
 - You can also use strict reverse path.

- How to Stop DDOS Attacks
 - First line of defense is to have enough bandwidth
 - If you have enough bandwidth, you can firewall
 - Place rules in to detect high amounts of PPS going to a specific IP address
 - Drop all traffic to that IP address for 10 minutes
 - Most on-line services do this; they route your traffic though their network that has high amounts of bandwidth at datacenters that is purchased on the cheap.
 - They then detect and block the DDOS attack.
 - This does work, but adds latency inside your network
 - Typically are cost prohibitive
 - If the traffic continues add them back in until the traffic stops, this blocks that type of traffic but does not take the customer off-line. This is a failed DDOS.

- How to Stop DDOS Attacks
 - Second is Black Hole Servers
 - If you don't have enough bandwidth to survive the attack
 - You advertise a /32 into black hole servers
 - Typically BGP process
 - Your provider must support this and have a documented and automated method
 - Some providers will have you establish a BGP session with their black hole servers
 - Some providers will simply have your add your /32 announcement with a specific community.
 - By advertising, you are telling your upstream(s) to block all traffic to that /32
 - This is YOUR /32, your IP, that IP will be offline, but the attack will not fill your pipe.
 - You can automate this with MIkroTik and several other solutions out there exist to detect and automate.
 - You can setup a BGP peer inside your network that you can get to that a single advertisement on it, advertises it to all of your upstream using the proper method.

- How to Stop DDOS Attacks
 - If you don't have BGP, do not have enough bandwidth, and are getting attacked.
 - The only option is to call your upstream.
 - Sometimes they will take a statement and/or block traffic going to a specific IP
 - This is non-automated
 - This means that IP will be offline
 - Some providers only have this method
 - Some providers will not black hole! Make sure to ask prior to purchasing.

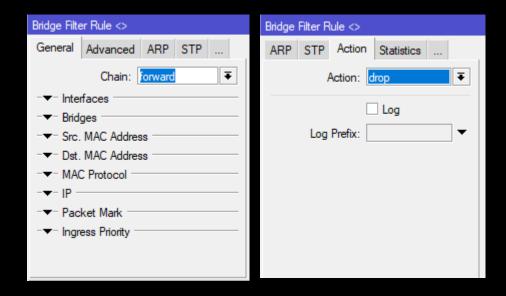
PREVENTION

- Key is metrics
 - •Inbound metrics and pps is important to block attacks, but not block normal traffic
 - •Every network is different, don't use my numbers as they may not work for you!

#	Action	Chain	Src. Address	Dst. Address	Proto	Src. Port	Dst. Port	In. Inter	Out. Int	Dst. Limit/Rate	Bytes	Packets	Comment
27	√accept	ddos_prev			6 (tcp)		4444,135-139,445				92.8 KiB	1 890	Block all Inbound
28	√accept	ddos_prev			17 (u		4444,135-139,445				5.2 KiB	68	Block all inbound
29	retum etum	ddos_prev								10000/sec	36.7 GiB	30 289 216	Return normal Traffic
30	add src to addr	ddos_prev									57.4 MiB	43 010	Add DST to DDOSe List
31	add src to addr	ddos_prev									46.8 MiB	35 109	Add DDOSer to BLOCK List
32	dadd dst to addr	ddos_prev									57.4 MiB	43 010	Add DDOSerto IP Llist
33	□ log	ddos_prev									593.7 KiB	432	Log types of traffic
34	retum e	ddos_prev									57.4 MiB	43 010	Return

PREVENTION

- Key is metrics
 - These metrics work for one customer, but not for another.
 - Make sure you understand what you are doing, when you put these kinds of rules in.
 - Note that there is no block rule here, we place that on the forward chain.
 - Make sure you know what you are going to block before blocking!


#	Action	Chain	Src. Address	Dst. Address	Proto	Src. Port	Dst. Port	In. Inter	Out. Int	Dst. Limit/Rate	Bytes	Packets	Comment
27	√accept	ddos_prev			6 (tcp)		4444,135-139,445				92.8 KiB	1 890	Block all Inbound
28	√accept	ddos_prev			17 (u		4444,135-139,445				5.2 KiB	68	Block all inbound
29	retum	ddos_prev								10000/sec	36.7 GiB	30 289 216	Return normal Traffic
30	add src to addr	ddos_prev									57.4 MiB	43 010	Add DST to DDOSe List
31	add src to addr	ddos_prev									46.8 MiB	35 109	Add DDOSer to BLOCK List
32	🗗 add dst to addr	ddos_prev									57.4 MiB	43 010	Add DDOSerto IP Llist
33	□ log	ddos_prev									593.7 KiB	432	Log types of traffic
34	retum	ddos_prev									57.4 MiB	43 010	Return

- Every client should be isolated into its own broadcast domain
 - This is not practical in all conditions, but can be done.
 - This allows the client to only talk to the router (their gateway) via ARP
 - Layer 3 connectivity can be used to allow clients to talk to one another, etc.
 - Layer 2 connectivity should never be given to your wireless network or infrastructure.

- How to do this?
 - Tower router with VLANs to switching
 - Add ports to bridge group
 - Firewall with Split-Horizon
 - This is hardware blocking
 - Turn off Default-Forward in access point – or disable clientto-client forwarding
 - This then puts each client into their own broadcast domain.
 - /interface bridge port set [find] horizon=100

					_
Interface	Bridge /	Priority (h	Path Cost	Horizon	
⊈tvlan100_mgmt_se	management	80	10		(
⊈vlan100_mgmt_ne	management	80	10		ſ
⊈tvlan100_mgmt_sw	management	80	10		J
4-4vlan102_2.4ghz_se	visp	80	10	100	
4-4vlan102_2.4ghz_ne	visp	80	10	100	١
⊈tvlan105_5ghz_se	visp	80	10	100	١
⊈tvlan105_5ghz_ne	visp	80	10	100	١
⊈tvlan105_5ghz_sw	visp	80	10	100	١
⊈vlan102 2.4ghz sw	visp	80	10	100	
#Ivlan102 2 4 dhz sw	Visto	80	10		
4:tylan 105_5ghz_sw	Visp	80	10	100	

- You can also use
 - Bridge filters to drop all forward traffic.
 - Thus you can allow specific MAC addresses to specific MAC addresses
 - This blocks all data between bridged ports.
 - This is a software feature
 - /interface bridge firewall add chain=forward action=drop

- •Rouge DHCP Servers
 - •This prevents the effects of Rough DHCP Servers
 - •Note, that your client should not have layer 2 access to your network anyways, so should not be an issue.

- Rouge DHCP Servers
 - •You can use DHCP-Alert to alert you of other DHCP Servers
 - •It will give you the MAC address and IP of the router that is running.
 - •However with proper client isolation, this should not matter.

- Switches
 - You can use switches, to do this as well
 - •Protected-Port status is a switch port that can't communicate with other switch ports that is in the same group.

- Inbound Ports
 - 80,443,8080,8181,81-90, 21-25, 123, 53, 161, 135-139, 445, 110, 143, 8888
 - Common inbound ports to block, both TCP and UDP
 - Blocks common amplification attacks, as well as common web based ports. If a client is smart enough to use other ports than port 80 and 443, then let them but otherwise we block them.
 - Why?
 - Most users are dumb... If they want to take responsibility for their internet connection the they can upgrade to a package that does not have a firewall on it.
 - NAT
 - Is not considered a security mechanism
 - But can be very effective assuming your router is secured

- Inbound Ports
 - 80,443,8080,8181,81-90, 21-25, 123, 53, 161, 135-139, 445, 110, 143, 8888
 - Common inbound ports to block, both TCP and UDP
 - What about other ports
 - 8291 WinBox
 - Your business needs will be what you need to block
 - Separate your business with VLANs, place one subnet on for management, and no vlan for clients
 - Firewall at every router with rules that prevent network access to the management network from your clients IP addresses.
- IP → Services on your MIkroTik Turn off the ones you don't use! Block management access to only your management network
 - Build a VPN to manage your network.

- Forwarding inside your network
 - Typically you consider the inside of your network more secure than the outside.
 - This is a bad idea, as attacks can come from anywhere
 - Secure your infrastructure, your wireless access points, and devices
 - Place them on a VLAN so that you can access them easily enough.
 - Place firewall rules to prevent any client subnets from accessing them.
 - You SHOULD NOT be able to access client devices from the inside of your network
 - Not without a secure VPN
 - Do not forget about IPv6
 - You need to secure your devices and client access devices