Enterprise networking
IGP and iBGP/MPLS, eBGP

MANAGE YOUR NETWORK WITH NO LIMITATION

MIKROTIK ROUTER OS
MUM DUBAI 2012
BY. ALI SAMI & HAYDAR FADEL
INTERIOR GATEWAY PROTOCOL (IGP) is a routing protocol that is used to exchange routing information within an autonomous system (AS).
INTERIOR GATEWAY PROTOCOL

- Designed for networks that are controlled by an organization.
- Design criteria to find the best path to reach neighbor network within AS
- OSPF is Commonly in use
EXTERIOR GATEWAY PROTOCOL

EGP allow to exchange of routing summary information between autonomous systems. An example of this type of routing protocol is Border Gateway Protocol (BGP)
BORDER GATEWAY PROTOCOL

✓ Its called a Path vector routing protocol
✓ BGP calls each routing domain an autonomous system (AS)
✓ Main metric is “shortest AS path”
✓ Using TCP transmission port 179 for neighbor relationship.
✓ Full and Incremental routing update (partial update)
✓ Contain two Type (Internal) and (External)
BORDER GATEWAY PROTOCOL (CONTINUED…)

✓ Learns multiple paths via internal and external BGP peers
✓ Select the best path and installs in the routing table
✓ Best path advertised to BGP peers
✓ Policies (path attribute) applied by choosing the best path selection set by BGP action.
INTERNAL BGP

✓ BGP peer within the same AS.
✓ Not required to be directly connected
✓ Internal peer need to be fully meshed:
 • Help to reach remote network using best path.
 • Redundant connectivity between internal peers
✓ iBGP peer do not re-advertise networks learned from other internal peers, its can re-advertise to eBGP peer
✓ IBGP will act as decision make from which external peer should reach the remote networks.
EXTERNAL BGP

✓ BGP peer between different AS.
✓ Required to be directly connected. Why???

Cause there is no IGP can carry your data to remote peer

✓ eBGP peer recommended to be fully meshed:
 • Redundant connectivity between external peers
✓ eBGP learn from External BGP peers
✓ Learned route from eBGP can be re-advertise to another eBGP and iBGP peers
✓ eBGP advertisement and data traffic controlled by path attribute.
✓ Default path attribute of eBGP is AS Path
BGP ROUTER SELECTION CONDITION

✓ NEXT_HOP of router should valid and reachable
✓ AS_PATH received from External peer does not contain the local AS
✓ Route is not rejected by routing filter
AUTONOMOUS SYSTEM

AS is a collection of networks that are controlled by single entity like ISP or very large organization

AS connectivity type

1. Single Homed.
2. Dual Homed.
4. Dual Multihomed.
5. Transit
SINGLE HOMED

- Connection design uses a single ISP
- Single link between ISP and enterprise.
- Only one possible next-hop router exists use only as Default route
DUAL HOMED
- Connection design uses a single ISP.
- Dual link between ISP and enterprise.
- Can use a pair of routers.
- Case of use Load balancing and fail over.
SINGLE MULTIHOME
- Connection design is a single link per ISP.
- Multiple link to enterprise (at least two ISP)
- Redundant and load balancing for up stream.
- Redundant and Load balancing for down steam
DUAL MULTIHOMED

- Connection design is a Multi link per ISP.
- Multiple link to enterprise (at least two ISP)
- Redundant and load balancing for Up stream.
- Redundant and Load balancing for down steam
Enterprise Networking total Solutions

AS100 Full Mesh Back bone iBGP Based on IGP / MPLS

VPLS/MPLS tunnel bridge two Remote network

AS150 / iBGP Based on IGP

AS200 / iBGP Based on IGP

AS120 Based on one way service through Satellite

AS250 Satellite Service Provider

Full Redundant eBGP
AS 100 GENERAL LAYOUT & DESIGN

- Full Mesh physical connectivity
- Using OSPF as IGP
- Back bone forwarding using MPLS
- iBGP to select best path to access Global network
ADVANTAGE OF DESIGN

✓ Mesh will provide full redundant connectivity at backbone
✓ IGP will provide full IP level connectivity between routers as mesh design
✓ IGP will help to keep iBGP away of network change
✓ iBGP will use loopback address to all neighbor relationship.... Why....? Loopback interface never goes down!!!
✓ each iBGP router need have one peer to each iBGP routers to achieve full mesh iBGP network.
✓ MPLS will increase forwarding performance at core network
IMPLEMENTATION AS 100 STEPS

1- Physical connectivity using Giga bit cooper or fiber
2- IP level connectivity between router using /30 subnet
3- Create Logical interface using bridge inside each core router
4- Use OSPF as carrier and network advertisements between routers.
5- MPLS between iBGP routers
6- Peer between iBGP routers
IP LEVEL LAYOUT
IMPLEMENTING OSPF

R1

R2

MIKROTIK-IQ
www.mikrotik-iq.com 009647704310098 Iraq - Baghdad
IMPLEMENTING OSPF

R3

R4
IMPLEMENTING MPLS

MIKROTIK-IQ

www.mikrotik-iq.com 0096470431098 Iraq - Baghdad
IMPLEMENTING MPLS

MPLS Settings

R3

R4

Mikrotik-IQ

www.mikrotik-iq.com 009647704310098 Iraq - Baghdad
IMPLEMENTING I-BGP

<table>
<thead>
<tr>
<th>BGP Instance <default></th>
<th>BGP Instance <default></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name: default</td>
<td>Name: default</td>
</tr>
<tr>
<td>AS: 100</td>
<td>AS: 100</td>
</tr>
<tr>
<td>Router ID: 1.1.1.1</td>
<td>Router ID: 2.2.2.2</td>
</tr>
</tbody>
</table>

Instances

<table>
<thead>
<tr>
<th>Name</th>
<th>Instance</th>
<th>Remote Address</th>
<th>Remote AS</th>
<th>M...</th>
<th>R...</th>
<th>TTL</th>
<th>Remote ID</th>
<th>Uptime</th>
<th>Prefix Co...</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1-R2</td>
<td>default</td>
<td>192.168.0.252</td>
<td>100</td>
<td>no</td>
<td>no</td>
<td>2.2.2.2</td>
<td></td>
<td>00:05:08</td>
<td>1</td>
<td>established</td>
</tr>
<tr>
<td>R1-R3</td>
<td>default</td>
<td>192.168.0.253</td>
<td>100</td>
<td>no</td>
<td>no</td>
<td>3.3.3.3</td>
<td></td>
<td>00:05:13</td>
<td>1</td>
<td>established</td>
</tr>
<tr>
<td>R1-R4</td>
<td>default</td>
<td>192.168.0.254</td>
<td>100</td>
<td>no</td>
<td>no</td>
<td>4.4.4.4</td>
<td></td>
<td>00:05:05</td>
<td>1</td>
<td>established</td>
</tr>
</tbody>
</table>

R2-R1	default	192.168.0.251	100	no	no	1.1.1.1		00:09:32	2	established
R2-R3	default	192.168.0.253	100	no	no	3.3.3.3		00:09:40	1	established
R2-R4	default	192.168.0.254	100	no	no	4.4.4.4		00:09:30	1	established

MIKROTIK-IQ

www.mikrotik-iq.com 009647704310098 Iraq - Baghdad
IMPLEMENTING I-BGP

R3

R4

MIKROTIK-IQ

www.mikrotik-iq.com 009647704310098 Iraq - Baghdad
TESTING NETWORK CONNECTIVITY USING TRACE ROUTE AND PING TOOLS
Connectivity test from R-A to R-B

Connectivity test from Host-A to remote Host-B
IMPLEMENTING E-BGP

✓ Configuration at other ASes will be similar at AS100
✓ To communicate All ASes to gather need to establish eBGP peer to remote AS
✓ Current AS type designed as Dual Multihomed To provide full redundant connection with other ASes
IMPLEMENTING E-BGP
IMPLEMENTING E-BGP (AS100 R1&R2)

<table>
<thead>
<tr>
<th>Name</th>
<th>Instance</th>
<th>Remote Address</th>
<th>Remote AS</th>
<th>M...</th>
<th>R...</th>
<th>TTL</th>
<th>Remote ID</th>
<th>Uptime</th>
<th>Prefix Co...</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>eBGP R1-R9</td>
<td>default</td>
<td>192.168.0.38</td>
<td>200</td>
<td>no</td>
<td>no</td>
<td>d...</td>
<td>9.9.9.9</td>
<td>00:09:08</td>
<td>1</td>
<td>established</td>
</tr>
<tr>
<td>eBGP R1-R7</td>
<td>default</td>
<td>192.168.0.34</td>
<td>150</td>
<td>no</td>
<td>no</td>
<td>d...</td>
<td>7.7.7.7</td>
<td>00:09:08</td>
<td>1</td>
<td>established</td>
</tr>
<tr>
<td>eBGP R2-R6</td>
<td>default</td>
<td>192.168.0.42</td>
<td>150</td>
<td>no</td>
<td>no</td>
<td>d...</td>
<td>6.6.6.6</td>
<td>00:11:20</td>
<td>1</td>
<td>established</td>
</tr>
<tr>
<td>eBGP R2-R10</td>
<td>default</td>
<td>192.168.0.46</td>
<td>200</td>
<td>no</td>
<td>no</td>
<td>d...</td>
<td>10.10.10</td>
<td>00:11:32</td>
<td>1</td>
<td>established</td>
</tr>
</tbody>
</table>

R1

R2

MIKROTIK-IQ
www.mikrotik-iq.com 009647704310098 Iraq - Baghdad
IMPLEMENTING E-BGP (AS100 R1&R2)
IMPLEMENTING E-BGP (AS150 R6&R7)
IMPLEMENTING E-BGP (AS200 R9&10)

R9

R10

MIKROTIK-IQ

www.mikrotik-iq.com 009647704310098 Iraq - Baghdad
as shown in the diagram each router have two peer with external AS to achieve full Mesh eBGP the reason is:

✓ Path Attribute.
✓ Redundant Link.
BGP PATH ATTRIBUTE

1. AS_PATH: router choose best path according to less AS_PATH
BGP PATH ATTRIBUTE (CONTINUED)

2. WEIGHT: configure locally on router to select route over another i.e. One link as primary and second as redundant.
 ✓ Cannot propagate to iBGP router to update changes
 ✓ Highest Weight wins over all valid paths
BGP PATH ATTRIBUTE (CONTINUED)

3. LOCAL_PREF: configure locally on router to select best path over another i.e. One link as primary and second as redundant.

- Can propagate to iBGP router to update the changes
- Highest value wins over all valid paths
BGP PATH ATTRIBUTE (CONTINUED)

4. Prepend : to influencing BGP route selection in the enterprise network or Internet is the extension of AS_PATH attribute, route with the shorts AS_PATH preferred.

- configure locally on router based on outbound advertise.
- Multi copies of own AS number added on AS_PATH
Now We have full IP level connectivity between all BGP Neighbors (iBGP & eBGP)

Its possible to have data connectivity between ASes?

If yes how? If NO! Please explain!!
EBGP NETWORK ADVERTISEMENT

✓ To achieve data connectivity between all remote networks
✓ Let other ASes to know about Other available Network.
✓ Should advertise the Network via eBGP peers
EBGP NETWORK ADVERTISEMENT (AS100R1 & R2)

<table>
<thead>
<tr>
<th>R1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

www.mikrotik-iq.com

009647704310098 Iraq - Baghdad
EBGP NETWORK ADVERTISEMENT (AS150 R6 & R7)
EBGP NETWORK ADVERTISEMENT (AS200 R9 & R10)

R9

R10
EBGP NETWORK ADVERTISEMENT (CONTINUED)

✓ Networks advertised on all you eBGP peers
✓ Each eBGP peer also receive other network advertised for direct connect peers.
✓ All eBGP router will re-advertise learned network from other peers and listed in BGP data base to direct connected peers

Note: eBGP will drop its own network at received update from other peers
BGP DATA BASE UPDATE TYPES (CONTINUED)

Full Update occurred when you turn on router first time or after hardware fail

Partial Update occurred when any new change happened at BGP data base i.e. added new network!

- Network with Local Preference 100 will update only to i-BGP peers
- Network with Local Preference 0 will update only to eBGP peers
BGP DATA BASE UPDATE TYPES (CONTINUED)

<table>
<thead>
<tr>
<th>Peer</th>
<th>Prefix</th>
<th>Nexthop</th>
<th>AS Path</th>
<th>Origin</th>
<th>Local Preference</th>
<th>MED</th>
</tr>
</thead>
<tbody>
<tr>
<td>eBGP R2-R10</td>
<td>192.168.0.0/21</td>
<td>192.168.0.45</td>
<td>igp</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>eBGP R2-R6</td>
<td>192.168.0.0/21</td>
<td>192.168.0.41</td>
<td>igp</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>R2-R1</td>
<td>192.168.8.0/21</td>
<td>192.168.0.32</td>
<td>150</td>
<td>igp</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>R2-R3</td>
<td>192.168.8.0/21</td>
<td>192.168.0.42</td>
<td>150</td>
<td>igp</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>R2-R4</td>
<td>192.168.8.0/21</td>
<td>192.168.0.43</td>
<td>150</td>
<td>igp</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>eBGP R2-R10</td>
<td>192.168.16.0/21</td>
<td>192.168.0.46</td>
<td>200</td>
<td>igp</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>R2-R3</td>
<td>192.168.16.0/21</td>
<td>192.168.0.42</td>
<td>200</td>
<td>igp</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>R2-R4</td>
<td>192.168.16.0/21</td>
<td>192.168.0.43</td>
<td>200</td>
<td>igp</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>

- Networks belong AS100
- Networks learned from eBGP advertise to iBGP
- Networks learned from eBGP re-advertise to eBGP
BGP DATA BASE UPDATE TYPES (CONTINUED)

AS 200

<table>
<thead>
<tr>
<th>Peer</th>
<th>Prefix</th>
<th>Nexthop</th>
<th>AS Path</th>
<th>Origin</th>
<th>Local Pref</th>
<th>MED</th>
</tr>
</thead>
<tbody>
<tr>
<td>R9-R10</td>
<td>192.168.0.0/21</td>
<td>192.168.0.37</td>
<td>100</td>
<td>igp</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>R9-R8</td>
<td>192.168.0.0/21</td>
<td>192.168.0.37</td>
<td>100</td>
<td>igp</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>eBGP R9-R6</td>
<td>192.168.0.0/21</td>
<td>192.168.15.18</td>
<td>100</td>
<td>igp</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>R9-R10</td>
<td>192.168.8.0/21</td>
<td>192.168.15.17</td>
<td>150</td>
<td>igp</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>R9-R8</td>
<td>192.168.8.0/21</td>
<td>192.168.15.17</td>
<td>150</td>
<td>igp</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>eBGP R9-R1</td>
<td>192.168.8.0/21</td>
<td>192.168.0.38</td>
<td>150</td>
<td>igp</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>eBGP R9-R1</td>
<td>192.168.16.0/21</td>
<td>192.168.0.38</td>
<td>150</td>
<td>igp</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>eBGP R9-R6</td>
<td>192.168.16.0/21</td>
<td>192.168.15.18</td>
<td>150</td>
<td>igp</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

Contact Information:

- Website: www.mikrotik-iq.com
- Email: ali@mikrotik-iq.com
- Phone: 009647704310098
- Location: Iraq, Baghdad
BGP Data Base Update Types (continued)

AS 150

<table>
<thead>
<tr>
<th>Peer</th>
<th>Prefix</th>
<th>Nexthop</th>
<th>AS Path</th>
<th>Origin</th>
<th>Local Preference</th>
<th>MED</th>
</tr>
</thead>
<tbody>
<tr>
<td>R6-R5</td>
<td>192.168.16.0/21</td>
<td>192.168.15.18</td>
<td>200</td>
<td>igp</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>R6-R7</td>
<td>192.168.16.0/21</td>
<td>192.168.15.18</td>
<td>200</td>
<td>igp</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>eBGP R6-R2</td>
<td>192.168.16.0/21</td>
<td>192.168.0.42</td>
<td>200</td>
<td>igp</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>eBGP R6-R2</td>
<td>192.168.8.0/21</td>
<td>192.168.0.42</td>
<td></td>
<td>igp</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>eBGP R6-R9</td>
<td>192.168.8.0/21</td>
<td>192.168.15.17</td>
<td></td>
<td>igp</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>R6-R5</td>
<td>192.168.0.0/21</td>
<td>192.168.0.41</td>
<td>100</td>
<td>igp</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>R6-R7</td>
<td>192.168.0.0/21</td>
<td>192.168.0.41</td>
<td>100</td>
<td>igp</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>eBGP R6-R9</td>
<td>192.168.0.0/21</td>
<td>192.168.15.17</td>
<td>100</td>
<td>igp</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
REDISTRIBUTE BGP DATA BASE TO IGP

To make lower routers reach the external network need to update the learned network from BGP to Internal routing protocol (OSPF).

At OSPF instance should set redistribute BGP as TYPE-1 (E1)

Why should be as TYPE 1?

- (E1) TYPE 1 increment cost (OSPF metric) as moving through OSPF domain and OSPF AS.
- To prevent routing loop at OSPF domain! cause there is more that on external link
REDISTRIBUTE BGP DATA BASE TO IGP
MAIN ROUTING TABLE AT ASBR

Network reachable via eBGP and iBGP

D = Dynamic
A = Active
b = BGP
eBGP distance = 20
iBGP distance = 200
Blue color = backup route
Network learned from iBGP but reachable via IGP cause its less distance

D = Dynamic
A = Active
b = BGP
o = OSPF
iBGP distance=200
OSPF distance=110
Blue color = backup route
TESTING CONNECTIVITY BETWEEN ASEs

ping 192.168.9.2 (PC)
TESTING CONNECTIVITY BETWEEN ASEs

C:\Users\Ali>tracert -d 192.168.9.2
Tracing route to 192.168.9.2 over a maximum of 30 hops
1 261 ms 202 ms 290 ms 192.168.1.1
2 1 ms 1 ms 1 ms 192.168.0.25
3 1 ms 1 ms 1 ms 192.168.0.10
4 1 ms 19 ms 1 ms 192.168.0.38
5 1 ms 1 ms 1 ms 192.168.0.42
6 1 ms <1 ms 1 ms 192.168.8.10
7 1 ms 1 ms 1 ms 192.168.8.14
8 1 ms <1 ms 1 ms 192.168.9.2
Trace complete.
C:\Users\Ali>ping 192.168.9.2
Ping 192.168.9.2 with 32 bytes of data:
Reply from 192.168.9.2: bytes=32 time=1ms TTL=121
Reply from 192.168.9.2: bytes=32 time=1ms TTL=121
Reply from 192.168.9.2: bytes=32 time=1ms TTL=121
Ping statistics for 192.168.9.2:
 Packets: Sent = 3, Received = 3, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
 Minimum = 1ms, Maximum = 1ms, Average = 1ms
THANKS FOR ATTENTION

Resources:

http://wiki.mikrotik.com
http://www.cisco.com
http://www.wikipedia.com