BALANCEO DE CARGA

Alejandro Teixeira G. ateixeira@mkx.cl MikroTik Certified Trainer MikroTik Trainer ID #TR0163

Topicos

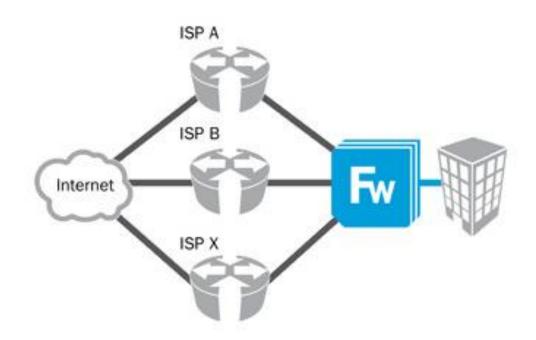
- ¿Qué es balanceo de carga?
 - Consideraciones
- Mecanismos de balanceo
 - ECMP
 - PCC
 - NTH
- Soluciones a posibles problemas
- Failover

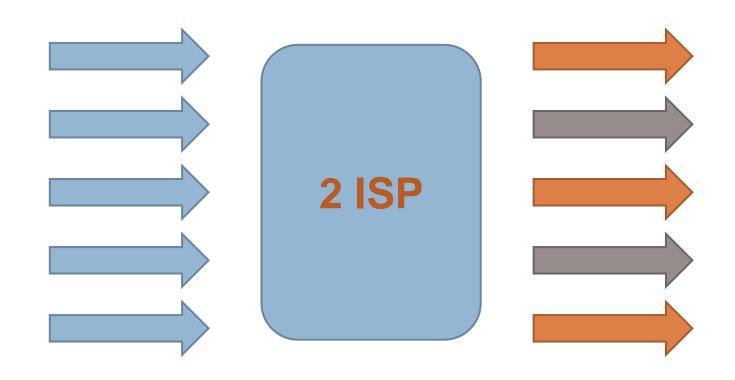
mikrotik xperts posulting

Pioneros en brindar conectividad a los rincones más recónditos de la Patagonia Chilena

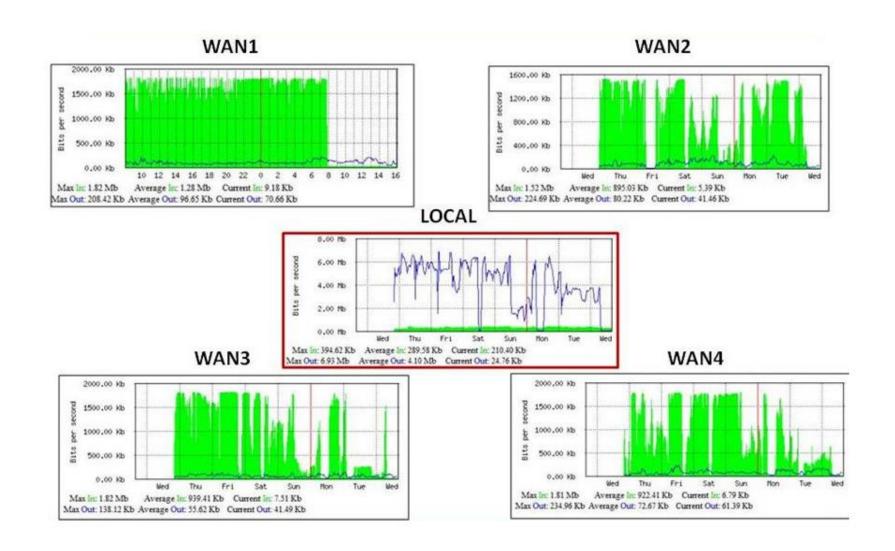
Nuestros clientes

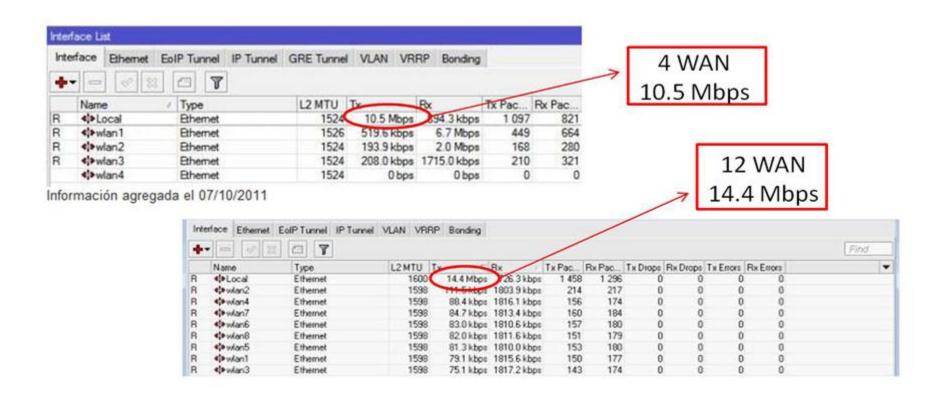
NuestrosClientes

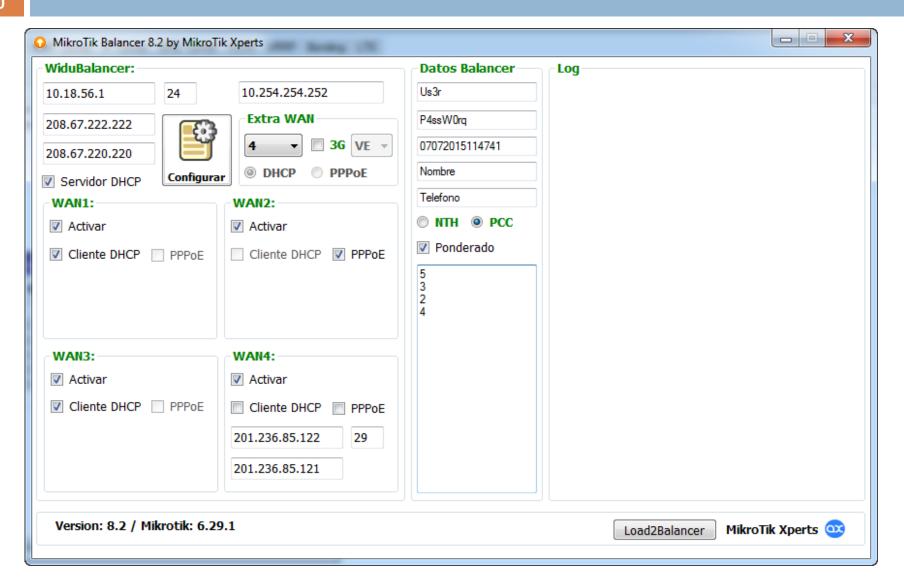

Austro proveedor oficial de NASA en Magallanes. por segundo año consecutivo, **NASA** ha confiado en nuestros altos estándares de calidad al momento de elegir un proveedor de internet para llevar a cabo sus proyectos investigativos en el continente Antártico.


¿Qué es balanceo de carga?

¿Qué es balanceo de carga?


 Proceso a través del cual el tráfico saliente es distribuido por múltiples enlaces


¿Qué es balanceo de carga?


Ejemplos

Ejemplos

Aplicación para configuración

Consideraciones

- Cuando se emplea algún mecanismo de balanceo, lo que realmente se balancea son el número total de conexiones entre la cantidad de enlaces disponibles.
- No se balancea el consumo de tráfico ni se "suma" literalmente.

12 Mecanismos de balanceo

Herramientas involucradas

- □ /ip firewall mangle
- □ /ip route
- /system scripts
- /system scheduler
- /ip firewall filter

ECMP: Equal Cost Multi-Path

- Simple de implementar
- Balanceo persistente por conexión
- Se agregan todas las puertas de enlace
 - En la misma ruta
- No se puede controlar la forma de balanceo
- No funciona con puertas de enlace iguales
 - Mas de una por proveedor
- Failover automatico
 - No es práctico

ECMP: Implementación

/ip route add gateway=1.1.1.1,2.2.2.1 check-gateway=ping

New Route									
General Attributes									
	Dst. Address:	0.0.0.0/0							
	Gateway:	200.200.200.1							
		150.150.150.1							
CI	Check Gateway:								
_	Туре:	unicast							

PCC: Peer Connection Classifier

- Sofisticado
- No distribuye de forma equitativa la cantidad de conexiones
- PCC toma algunos campos de la cabecera IP
 - Alguna combinación
 - IP (origen/destino) y puerto (origen/destino)
 - La cabecera se divide por el número de ISP activos
 - El resultado indica
- Clasificadores
 - src-address
 - dst-address
 - src-port
 - dst-port

PCC: ¿Cómo funciona?

- Número de enlaces wan: 3
- Posibles resultados: 0, 1 o 2
- Hash 1: 14350 / 3 = 1
- □ Hash 2: 3480 / 3 = 0
- Hash 3: 13468 / 3 = 1
- □ Hash 4: 5390 / 3 = 2
- □ Hash 5: 7894 / 3 = 1
- Link 0: 1
- Link 1: 3
- Link 2: 1

ALEATORIO

PCC: Implementación

/ip firewall mangle add

chain=prerouting

in-interface=lan

connection-mark=no-mark

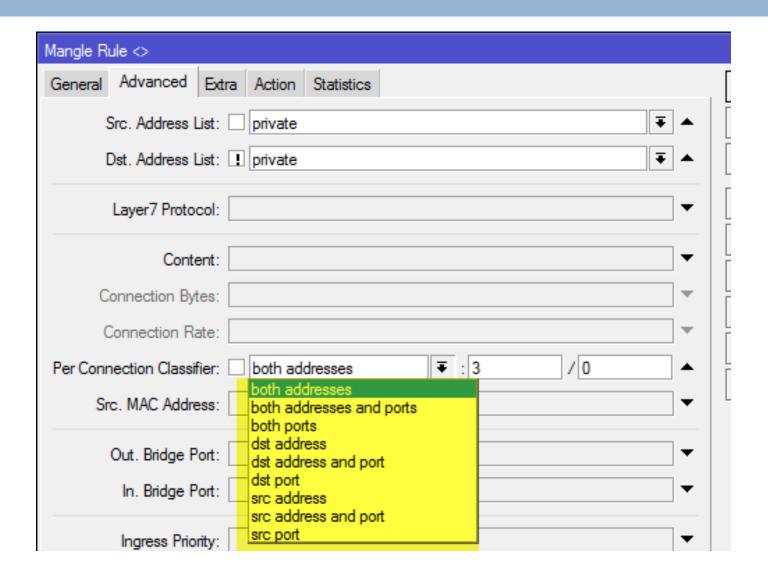
action=mark-connection

new-connection-mark=wan1_conn

per-connection-classifier=both-addresses:2/1

Marcas de nuevas conexiones

Repetir para cada WAN


/ip firewall mangle add

passthrough=no

chain=prerouting
in-interface=lan
connection-mark=wan1_conn
action=mark-routing
new-routing-mark=to_wan1

Marca de rutas para cada conexión marcada

PCC:MANGLE

PCC: implementación

```
/ip route add
distance=1
gateway=1.1.1.1
routing-mark=to_wan1
```

/ip route add

Rutas

distance=1 gateway=2.2.2.1 routing-mark=to_wan2

Balanceo con 4 enlaces de 10M

ınnel	VLAN	VRRP Bond	ing	LTE			
ΤU	Tx		Rx			Tx Packet (p/s)	F
		455.4 kbps			11.8 kbps	41	Т
		41.0 Mbps			761.2 kbps	3 390	
		172.5 kbps			10.2 Mbps	387	
		125.2 kbps			10.3 Mbps	281	
		199.5 kbps			10.2 Mbps	439	
		204.7 kbps			10.2 Mbps	444	

NTH

- Permite distribuir de forma equitativa
- Cada regla del NTH tiene su propio contador
- Cuando una regla recibe un paquete se incrementa el contador
- Cuando el contador llega al máximo se reinicia

NTH: implementación

/ip firewall mangle add

chain=prerouting in-interface=lan **connection-mark**=no-mark action=mark-connection

Nuevas marcas de conexión

new-connection-mark=wan[link number]_conn nth=[link number],1

/ip firewall mangle add

chain=prerouting in-interface=lan connection-mark=wan1_conn action=mark-routing new-routing-mark=to_wan1 passthrough=no

Repetir

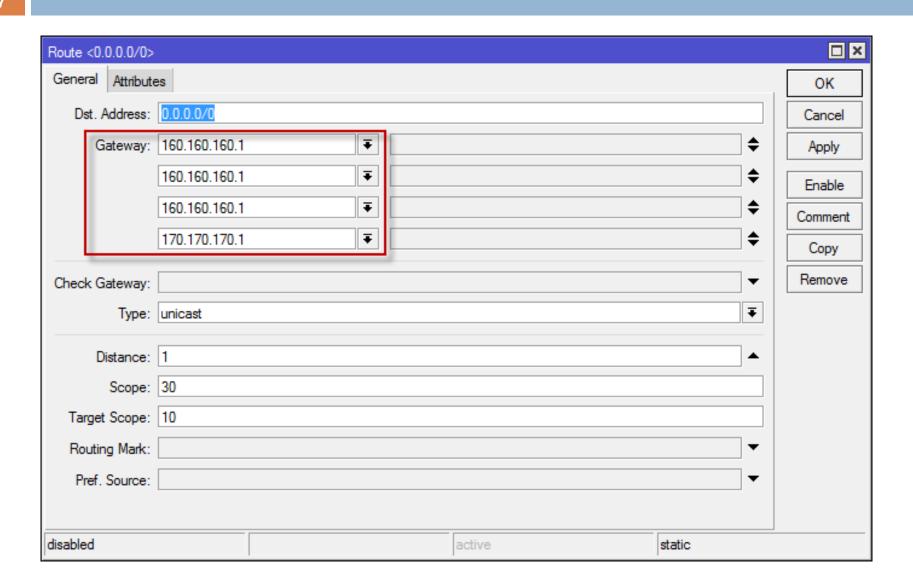
para cada WAN

Marca de rute para cada marca de conexión

NTH: implementación

```
/ip route add
distance=1
gateway=1.1.1.1
routing-mark=to_wan1
```

Rutas iguales que PCC

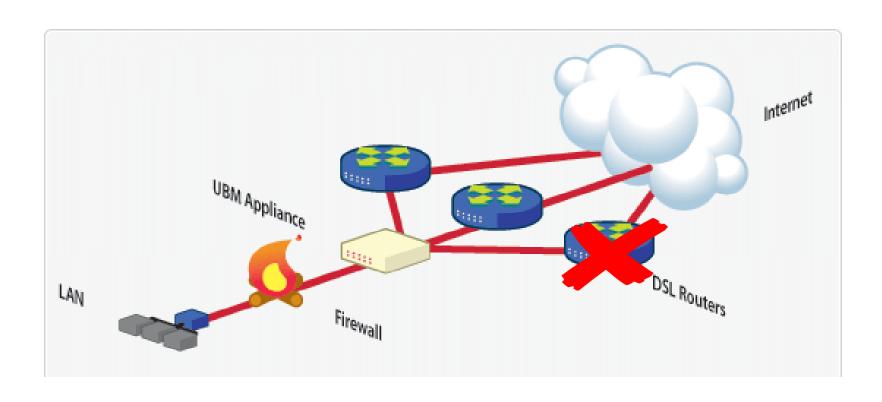

/ip route add distance=1 gateway=2.2.2.1 routing-mark=to_wan2

Poderación de enlaces

¿Dónde puedo aplicar ponderación?

- ECMP
 - Simple de implementar
- PCC
 - Complejo de implementar
 - Robusto y escalable
- NTH
 - No permite implementar

Ponderación: ECMP


Ponderación: PCC

add action=mark-connection chain=prerouting comment="SIN PONDERACION - 2 WAN / PCC" connection-mark=no-mark ininterface=ether2_laptop new-connectionmark=mc_to-wan1 per-connectionclassifier=both-addresses-and-ports:8/x

both addresses and ports:8/0	mc_to-wan1	0 B	0 CON PONDERAC
both addresses and ports:8/1	mc_to-wan1	0 B	0 CON PONDERAC
both addresses and ports:8/2	mc_to-wan1	250 B	2 CON PONDERAC
both addresses and ports:8/3	mc_to-wan2	0 B	0 CON PONDERAC
both addresses and ports:8/4	mc_to-wan2	0 B	0 CON PONDERAC
both addresses and ports:8/5	mc_to-wan3	0 B	0 CON PONDERAC
both addresses and ports:8/6	mc_to-wan3	0 B	0 CON PONDERAC
both addresses and ports:8/7	mc_to-wan4	0 B	0 CON PONDERAC

Failover

Failover

Cómo manejar Failover

- Formas comúmes
 - Scripts
 - Haciendo ping a links externos.
 - Netwatch
 - Haciendo ping a links externos.
- Sin scripts ni Netwatch
 - Routes Nexthop Lookup
 - Rutas recursivas
 - Usando scope=10
 - check-gateway=ping

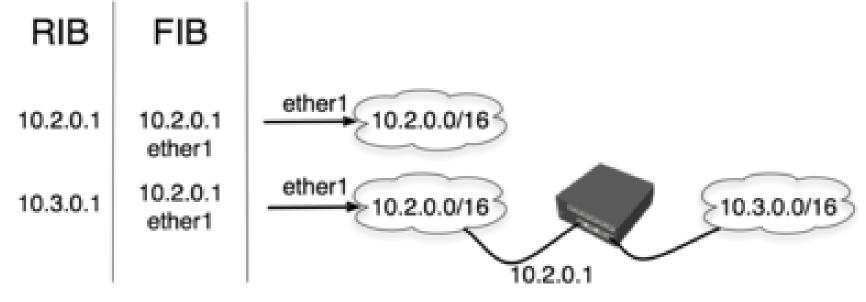
Failover: scripts

```
:local pingip
:set pingip [/ping 1.1.1.1 count=10]
:if (pingip = 0) do={
       /ip dhcp-client disable [find interface=ether1_wan1]
        :delay 1s
        /ip dhcp-client enable [find interface=ether1_wan1]
:global gateway1a [/ip dhcp-client get [find interface=wan1] gateway]
:global gateway1b [/ip route get [find routing-mark=mr_to-wan1
comment=mr_to-wan1] gateway]
:if ($gateway1a != $gateway1b) do={
       /ip route set [find comment=mr_to-wan1]
gateway=$gateway1a
```

Failover: consideraciones

- Debe existir una o mas rutas por defecto
 - Se usa como desborde cuando una tabla de enrutamiento no está disponible
- Se puede aplicar la opción checkgateway=ping para revisar estado de la puerta de enlace
 - Esto no garantiza que el servicio esté caído dado que solo revisa la conexión con la puerta de enlace
- Se debe hacer chequeo externo

Resolviendo el Next-Hop Recursivo


- Es posible especificar el gateway a una red incluso si el gateway no se puede alcanzar directamente. Esto se puede lograr usando <u>Resolución de Next-Hop Recursivo</u> desde cualquier ruta existente
- Una ruta debe estar en el <u>scope</u> (al alcance) de otra ruta para que la Resolución de Next-Hop Recursivo funcione.

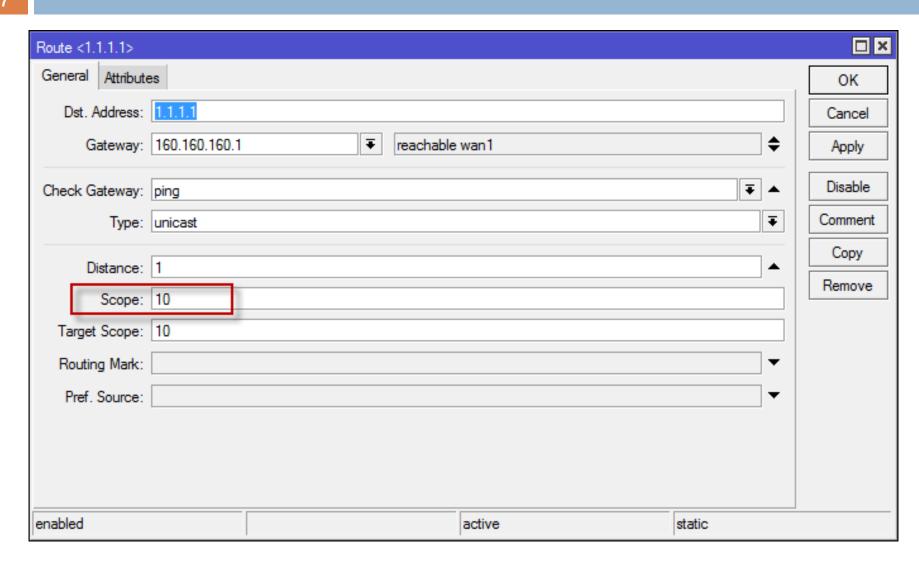
Nexthop Lookup: scope

- Nexthop 10.2.0.1 es resuelta por una ruta conectada, su estado es alcanzable
- Nexthop 10.3.0.1 es resuelto a través de la ruta 10.3.0.0/16, su estado es recursivo, y utiliza 10.2.0.1 como valor de próximo salto instalado en el FIB.

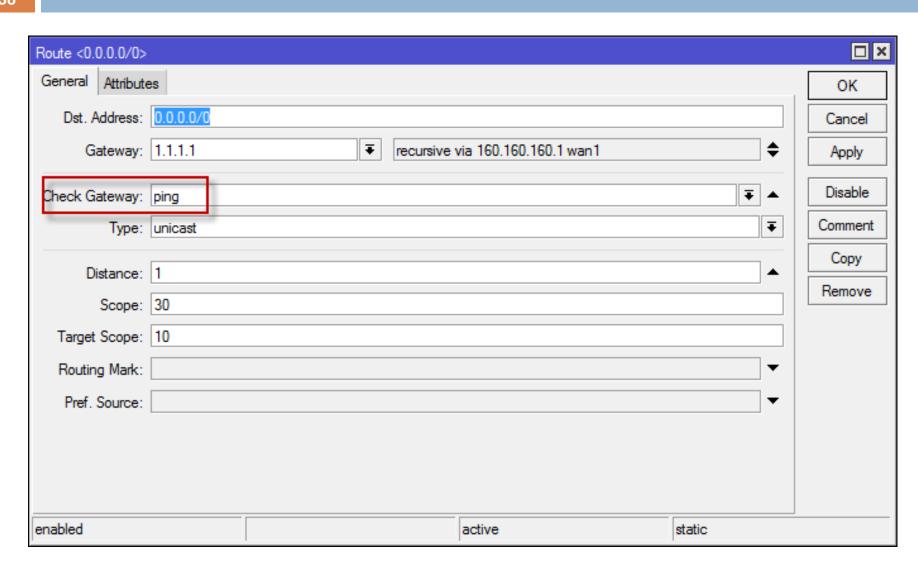
Next Hops

Failover

Failover usando scope y check-gateway by ping


/ip route

add dst-address=8.8.8.8 gateway=1.1.1.1 scope=10 add dst-address=8.8.4.4 gateway=2.2.2.1 scope=10


add distance=1 dst-adress=0.0.0.0/0 gateway=8.8.8.8 routing-mark=to_wan1 check-gateway=ping

add distance=2 gateway=8.8.4.4 routing-mark=to_wan2 check-gateway=ping

Failover: chequeo ping recursivo

Failover: chequeo ping recursivo

Failover: chequeo ping recursivo

Routes	Nexthops Rules	VRF				
+ -	· × × =	T				Find all
	Dst. Address	Gateway	Distance	Routing Mark	Pref. Source	Comment
KS.	▶ 0.0.0.0/0	3.3.3.3	1	mr_to-wan3		recursive - x
(S	▶ 0.0.0.0/0	4.4.4.4	1	mr_to-wan4		recursive - x
٩S	0.0.0.0/0	2.2.2.2 recursive via 170.170.170.1 wan2	1	mr_to-wan2		recursive - wan2
٩S	0.0.0.0/0	1.1.1.1 recursive via 160.160.160.1 wan1	1	l mr_to-wan1		recursive - wan1
٩S	2.2.2.2	170.170.170.1 reachable wan2	1	l .		recursive - mr_to-wan2
AS	▶1.1.1.1	160.160.160.1 reachable wan 1	1	l		recursive - mr_to-wan1
AS	0.0.0.0/0	1.1.1.1 recursive via 160.160.160.1 wan1	1			recursive - default
5	0.0.0.0/0	2.2.2.2 recursive via 170.170.170.1 wan2	2	2		recursive - default
XS	▶ 4.4.4.4	179.179.179.1%wan4	1			mr_to-wan4 - recursive
XS	▶ 0.0.0.0/0	179.179.179.1%wan4	1	mr_to-wan4		mr_to-wan4
XS	▶ 0.0.0.0/0	179.179.179.1%wan4	4	1		mr_to-wan4
XS	▶ 3.3.3.3	179.179.179.1%wan3	1			mr_to-wan3 - recursive
XS	▶ 0.0.0.0/0	179.179.179.1%wan3		mr_to-wan3		mr_to-wan3
XS	▶ 0.0.0.0/0	179.179.179.1%wan3	3	3		mr_to-wan3
KS	▶ 0.0.0.0/0	170.170.170.1		mr_to-wan2		mr_to-wan2
KS.	▶ 0.0.0.0/0	170.170.170.1	2	2		mr_to-wan2
KS	▶ 0.0.0.0/0	160.160.160.1	1	mr_to-wan1		mr_to-wan1
KS	▶ 0.0.0.0/0	160.160.160.1	1			mr_to-wan1
(S	▶ 0.0.0.0/0	160.160.160.1 , 160.160.160.1 , 160.160.160.1 , 170.170	1			ECMP PONDERADO
KS	▶ 0.0.0.0/0	170.170.170.1 , 160.160.160.1	1			ECMP
٩S	▶ 10.253.253.0/	100.100.100.1 reachable ether1_admin	1	I		
DAC	▶ 100.100.100.0	ether1_admin reachable	()	100.100.100	
DAC	▶ 160.160.160.0		()	160.160.160	
DAC	▶ 170.170.170.0	wan2 reachable	()	170.170.170	
DAC	-	wan3 reachable, wan4 reachable	()	179.179.179	
DAC	▶ 192.168.255.0	ether2_laptop reachable	()	192.168.255.1	
•						

Failover recursivo

- Importante: Éste método de implementar failover no funciona cuando se tienen múltiples links con el mismo gateway. En éste caso es necesario scripts o netwatch chequeando enlaces externos.
- Si el enlace no tiene IP y gateway fijo también son necesarios scripts.

Failover con desborde

Failover con desborde

- Redistribuye las conexiones correspondientes a la wan sin servicio por el resto de las wan.
- La redistribución se puede llevar a cabo usando diferentes lógicas. Depende directamente del criterio del administrador
 - Redistribución en base a ponderaciones
 - Redistribución en base a cantidad de wan
- Técnica complicada y compleja de desarrollar
 - Se recomienda emplear herramientas API

Ejercicio: failover con desborde

		1	2	3	2,3	1,3	1,2
	1,2,3	2,3	1,3	1,2	1	2	3
6/0	1	2	1	1	1	2	3
6/1	1	2	1	1	1	2	3
6/2	1	3	1	1	1	2	3
6/3	2	2	1	2	1	2	3
6/4	2	2	1	2	1	2	3
6/5	3	3	3	1	1	2	3

Ejercicio: failover con desborde

ether2_laptop	both addresses and ports:6/0	0 B	0 mc_to-wan1
ether2_laptop	both addresses and ports:6/1	0 B	0 mc_to-wan1
ether2_laptop	both addresses and ports:6/2	0 B	0 mc_to-wan1
ether2_laptop	both addresses and ports:6/3	0 B	0 mc_to-wan2
ether2_laptop	both addresses and ports:6/4	0 B	0 mc_to-wan2
ether2_laptop	both addresses and ports:6/5	0 B	0 mc_to-wan3
ether2_laptop	both addresses and ports:6/0	0 B	0 mc_to-wan2
ether2_laptop	both addresses and ports:6/1	0 B	0 mc_to-wan2
ether2_laptop	both addresses and ports:6/2	0 B	0 mc_to-wan3
ether2_laptop	both addresses and ports:6/3	0 B	0 mc_to-wan1
ether2_laptop	both addresses and ports:6/4	0 B	0 mc_to-wan1
ether2_laptop	both addresses and ports:6/5	0 B	0 mc_to-wan1
ether2_laptop	both addresses and ports:6/2	0 B	0 mc_to-wan2
ether2_laptop	both addresses and ports:6/5	0 B	0 mc_to-wan2
ether2_laptop	both addresses and ports:6/0	0 B	0 mc_to-wan3
ether2_laptop	both addresses and ports:6/1	0 B	0 mc_to-wan3
ether2_laptop	both addresses and ports:6/3	0 B	0 mc_to-wan3
ether2 laptop	both addresses and ports:6/4	0 B	0 mc to-wan3

Posibles problemas

Posibles problemas balanceando

- Problemas con páginas HTTPS
- Problemas con conexiones al mismo router
- Permitir acceso a servidores internos por una WAN específica (DST-NAT)
- Forzar un host por una wan específica.
- Varios links con el mismo gateway

Problema con SSL páginas HTTPS

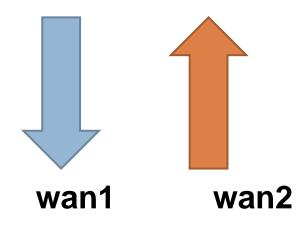
- Sitios como Gmail y bancos no permiten establecer múltiples conexiones provenientes de diferentes enlaces simultáneamente.
 - Phishing
- Comunmente se usa el 443

Problema con SSL páginas HTTPS

/ ip firewall mangle

Colocar de primera en el mangle

add action=accept chain=prerouting dst-port=443 ininterface=lan passthrough=no protocol=tcp


/ip route

Ruta por defecto para conexiones delmismo router o no marcadas.

add distance=1 gateway=1.1.1.1 add distance=1 gateway=2.2.2.1

Problema con conexiones dirigidas al router

- Paquetes salientes utilizan la misma decisión de ruteo que los paquetes que atraviesan el router.
- Las respuestas de un paquete que fue recibida por wan1 podría ser enviada de vuelta y enmascarada por wan2

Problema con conexiones dirigidas al router

/ip firewall mangle add

action=mark-connection

chain=input

connection-mark=no-mark

in-interface=wan1

new-connection-mark=wan1_conn

Marcamos conexiones de entrada

/ip firewall mangle add action=mark-routing chain=output

connection-mark=wan1_conn
new-routing-mark=to_wan1
passthrough=no

Forzamos que la conexión sea ruteada por una wan específica.

Permitir acceso a servidores internos desde una wan específica

add action=mark-connection <u>chain=forward</u>
 connection-mark=no-mark <u>in-interface=wan1</u>
 new-connection-mark=mc_to-wan1 out-interface=ether2_laptop passthrough=no

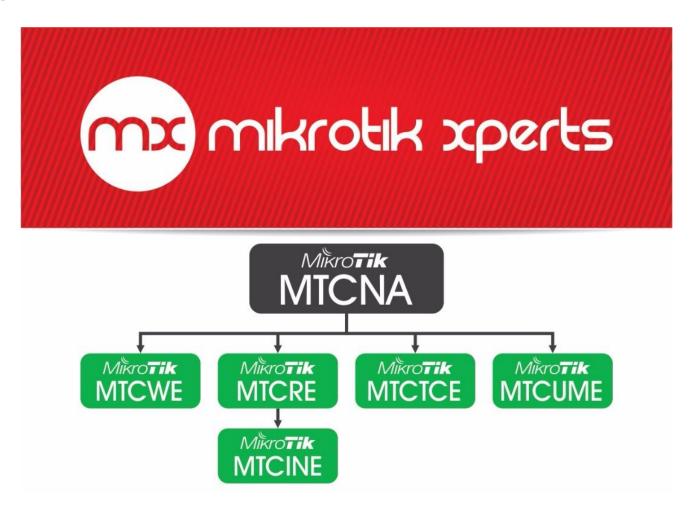
 add action=mark-routing <u>chain=prerouting</u> connection-mark=mc_to-wan1 in- interface=ether2_laptop new-routing-mark=mr_to-wan1 passthrough=no

Forzar acceso a internet por una wan específica

add action=mark-routing chain=prerouting comment=EXCEPCION dstaddress=54.165.129.249 new-routingmark=mr_to-wan2

Múltiples enlaces con el mismo Gateway

Forza el tráfico respetando cada routing-mark


/ip route

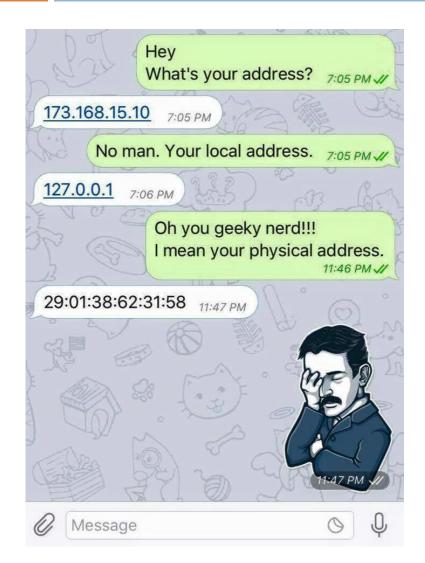
add gateway=10.10.1.1%wan1 routing-mark=to_wan1

add gateway=10.10.1.1%wan2 routing-mark=to_wan2

Invitación

Cursos de certificación oficial MikroTik

Invitación



WhatsApp: +56-9-9017-1908, Fijo: 2-2583-5522 www.mkx.cl / cursos@mkx.cl

Las Condes, Santiago - Chile

¿Preguntas?

Gracias por su atención