

## **Wireless High Performance**

With RouterOs 6

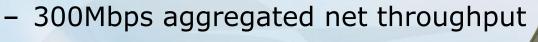
#### **Andrea Grittini**

Wireless Division
Wi4Net - Totalconn

Mikrotik User Meeting Zagreb(PL) 14-15 March 2013



### **Wi4Net - Totalconn**


- Mikrotik Italian distributor
- Training and Consulting
- Building Certified Devices for EU market
- Wireless distribution
- E-commerce Web site www.wi4net.it





### **Totalconn**

17GHz Unlicensed PTP Bridge with RouterOs:



- TDD technique
- Carrier Level device





Wireless High Performance



### **Totalconn**

Based on RB435G

Up/down converted to 17GHz

 Could be done in most of the Licensed or unlicensed freq.
 Eg. 24GHz, 26GHz, 13GHz...

... find us at our stand!

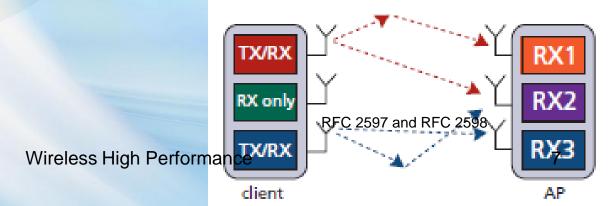




### Goal

Discover the maximum possible performance with wireless in RouterOs 6

## WIRELESS DEVICES


### **Topics**

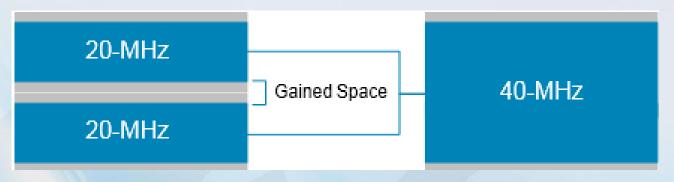
- Something more about wireless:
- MIMO
- Media Access Control and TDMA
- New functionality (RouterOs 6 rc9)
- High speed and NV2
- Settings
- Near Future



### Mimo 802.11n

- MIMO is an abbreviation for Multiple-Input Multiple-Output, which refers to the ability of equipment to handle multiple data input and multiple data output operation.
- Wi-Fi 802.11n devices make use of multiple antennas to send and receive more than one communication signal simultaneously
- 2x2, 3x3 up to 4x4 streams

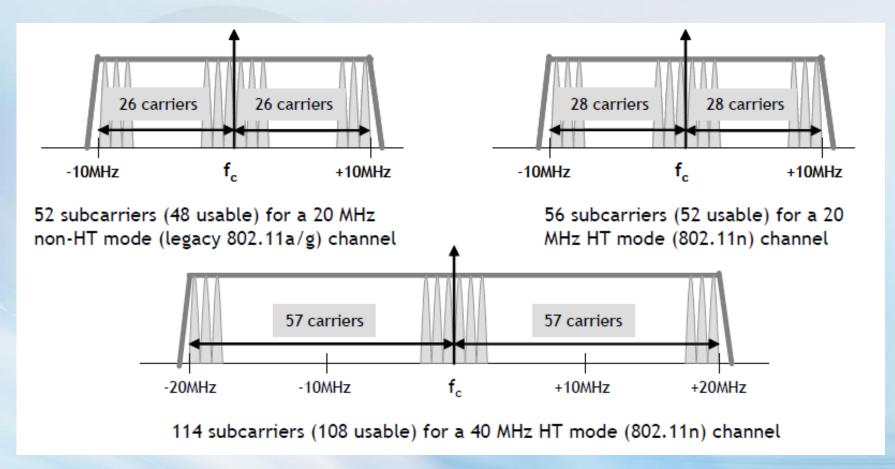





#### 802.11n 40MHz

- 40MHz = 2 aggregated 20MHz channels
- takes advantage of the reserved channel space through bonding to gain more than double the data rate of 2 20MHz channels




# 802.11n Channel bonding WKINET



- 802.11n supports 20 or 40 MHz wide channels
- 40 MHz wide channels recommended only for 5 GHz
- also referred to as extension channel
- Second channel must be adjacent
- Can be above or below primary

## **MIMO** improvements



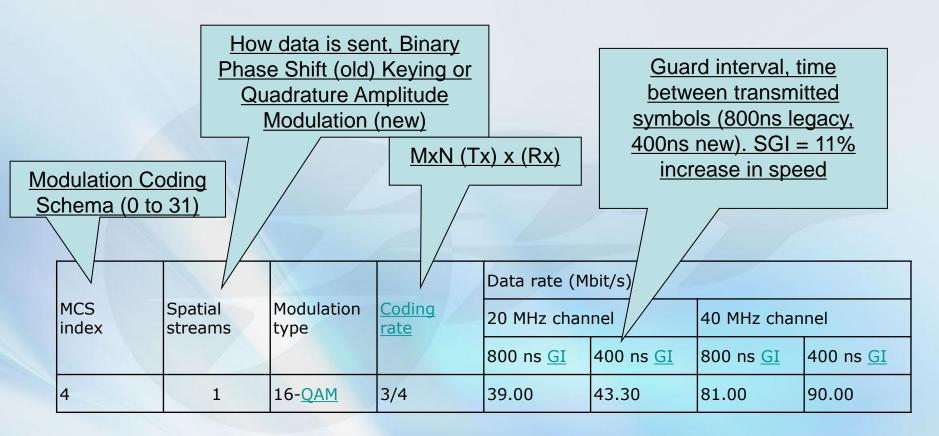


## WIRELESS DEVICES

### **Efficency**

- Much of the throughput improvement in 802.11n comes from aggregation techniques. Frame aggregation improves the efficiency of 802.11n systems by reducing the protocol overhead required for transmitting protocol frames.
- The Aggregated Medium Access Control Service Data Unit (A-MSDU) mechanism increases the frame size used in transmitting Medium Access Control (MAC) protocol frames. The Aggregated MAC Protocol Data Unit (A-MPDU) mechanism increases the maximum size of the 802.11 frames transported on the air from the legacy 2304 bytes to 64k bytes

## WIRELESS DEVICES


### **Guard Interval**

- MIMO and channelization both directly affect a device's data rate. In addition, an 802.11n technique called Short Guard Interval (SGI) can also improve data rate by reducing the size of the gap between symbols.
- SGI is changed from 800ns to 400ns
- 400ns is used when possible
- SGI increase up to 11% the performance

|              |                 |                 |             | Data rate (M     | Data rate (Mbit/s) |                  |             |  |  |
|--------------|-----------------|-----------------|-------------|------------------|--------------------|------------------|-------------|--|--|
| MCS<br>index | Spatial streams | Modulation type | Coding rate | 20 MHz char      | nnel               | 40 MHz chai      | nelW4N      |  |  |
| lindex       | Sciedins        | type            | iace        | 800 ns <u>GI</u> | 400 ns <u>GI</u>   | 800 ns <u>GI</u> | 400 hs 51 0 |  |  |
| 4            | 1               | 16- <u>QAM</u>  | 3/4         | 39.00            | 43.30              | 81.00            | 90.00       |  |  |
| 5            | 1               | 64- <u>QAM</u>  | 2/3         | 52.00            | 57.80              | 108.00           | 120.00      |  |  |
| 6            | 1               | 64- <u>QAM</u>  | 3/4         | 58.50            | 65.00              | 121.50           | 135.00      |  |  |
| 7            | 1               | 64- <u>QAM</u>  | 5/6         | 65.00            | 72.20              | 135.00           | 150.00      |  |  |
| 8            | 2               | BPSK            | 1/2         | 13.00            | 14.40              | 27.00            | 30.00       |  |  |
| 9            | 2               | <u>QPSK</u>     | 1/2         | 26.00            | 28.90              | 54.00            | 60.00       |  |  |
| 10           | 2               | <u>QPSK</u>     | 3/4         | 39.00            | 43.30              | 81.00            | 90.00       |  |  |
| 11           | 2               | 16- <u>QAM</u>  | 1/2         | 52.00            | 57.80              | 108.00           | 120.00      |  |  |
| 12           | 2               | 16- <u>QAM</u>  | 3/4         | 78.00            | 86.70              | 162.00           | 180.00      |  |  |
| 13           | 2               | 64- <u>QAM</u>  | 2/3         | 104.00           | 115.60             | 216.00           | 240.00      |  |  |
| 14           | 2               | 64- <u>QAM</u>  | 3/4         | 117.00           | 130.00             | 243.00           | 270.00      |  |  |
| 15           | 2               | 64- <u>QAM</u>  | 5/6         | 130.00           | 144.40             | 270.00           | 300.00      |  |  |
| 16           | 3               | <u>BPSK</u>     | 1/2         | 19.50            | 21.70              | 40.50            | 45.00       |  |  |
| 17           | 3               | QPSK            | 1/2         | 39.00            | 43.30              | 81.00            | 90.00       |  |  |
| 18           | 3               | <u>QPSK</u>     | 3/4         | 58.50            | 65.00              | 121.50           | 135.00      |  |  |
| 19           | 3               | 16- <u>QAM</u>  | 1/2         | 78.00            | 86.70              | 162.00           | 180.00      |  |  |
| 20           | 3               | 16- <u>QAM</u>  | 3/4         | 117.00           | 130.00             | 243.00           | 270.00      |  |  |
| 21           | 3               | 64- <u>QAM</u>  | 2/3         | 156.00           | 173.30             | 324.00           | 360.00      |  |  |
| 22           | 3               | 64- <u>QAM</u>  | 3/4         | 175.50           | 195.00             | 364.50           | 405.00      |  |  |
| 23           | 3               | 64- <u>QAM</u>  | 5/6         | 195.00           | 216.70             | 405.00           | 450.00      |  |  |



### **MCS** index



## 802.11n: Channel Bonding

| Channel Width: | 20MHz ₹           |   |
|----------------|-------------------|---|
| Frequency:     | 5MHz<br>10MHz     |   |
| eein-          | 20/40MHz HT Above |   |
|                | 20/40MHz HT Below |   |
| Radio Name:    | ZUIVIFIZ          | L |

| Interface <wl< th=""><th>an1&gt;</th><th></th><th></th><th></th><th></th><th></th><th></th></wl<> | an1>  |             |     |         |     |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------|-------|-------------|-----|---------|-----|--|--|--|--|--|
| Advanced                                                                                          | НТ    | HT MCS      | WDS | Nstreme | NV2 |  |  |  |  |  |
| HT Tx Chains: ✓ chain0 ✓ chain1 HT Rx Chains: ✓ chain0 ✓ chain1                                   |       |             |     |         |     |  |  |  |  |  |
| HT AN                                                                                             | //SDU | J Limit: 81 | 92  |         |     |  |  |  |  |  |
| HT AMSDU Threshold: 8192                                                                          |       |             |     |         |     |  |  |  |  |  |
| HT Guard Interval: any Wireless High Performance                                                  |       |             |     |         |     |  |  |  |  |  |



## **Media Access Control**



### 802.11

- 802.11 protocol is Half Duplex protocol
- 1 frequency slot is used for send and receive data at the same time
- End point must acknoledge the trasmission every time, with the CDMA/CA protocol

## 802.11 MAC (Media Access Control)

The 802.11 family uses a MAC layer known as **CSMA/CA** (Carrier Sense Multiple Access/Collision Avoidance)

NOTE: Classic Ethernet uses CSMA/CD - collision detection). CSMA/CA is, like all Ethernet protocols, peer-to-peer (there is no requirement for a master station).

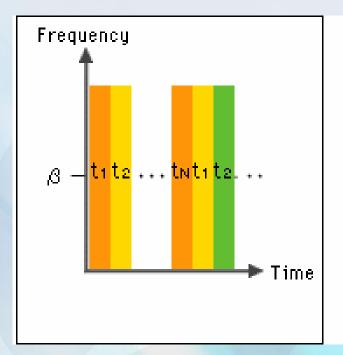
|        |   | MPDU |   |   |   |    | MPDU |
|--------|---|------|---|---|---|----|------|
| Node A | D |      | S | A | D | CW |      |
| Node B |   |      |   |   |   |    |      |
| Node C |   |      |   |   |   |    |      |
|        |   |      |   |   |   |    |      |

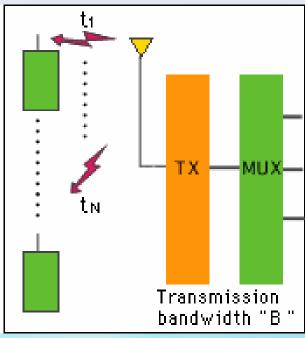


### **MAC** sequence

- In CSMA/CA a Wireless node that wants to transmit performs the following sequence:
- 1. Listen on the desired channel.
- 2. If channel is **idle** (no active transmitters) it **sends** a packet.
- If channel is busy (an active transmitter) node waits until transmission stops then a further CONTENTION period. (The Contention period is a random period after every transmit).
- 4. If the channel is still idle at the end of the **CONTENTION** period the node transmits its packet otherwise it repeats the process defined in 3 above until it gets a free channel.
- D = DCF Inter Frame Space (DIFS)
- S = Short Inter Frame Space (SIFS)
- CW = Contention Window
- MPDU = MAC Protocol Data Unit
- A = Ack

|        | . MPDU |  |   |   |   |    |   |  |  |
|--------|--------|--|---|---|---|----|---|--|--|
| Node A | D      |  | S | A | D | CW | _ |  |  |
| Node B |        |  |   |   |   |    |   |  |  |
| Node C |        |  |   |   |   |    |   |  |  |
|        |        |  |   |   |   |    |   |  |  |


## WIRELESS DEVICES


### **TDMA**

- TDMA: Time Division Multiple Access
- It implements a rule for deciding WHO speaks with the Access Point and WHEN
- AP divides time in fixed "periods", which are dynamically divided between Upload and Download
- Then clients speak with the access point at their "period"

## WIRELESS DEVICES

#### **TDMA**





- Trasmission is divided in Time Slot
- User has his time slot assigned and can trasmit at max speed

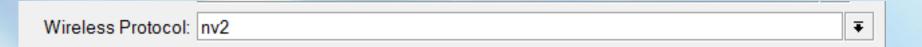


### **TDMA: advantages**

- Collisions for media contention are eliminated
- More clients could speak with AP
- Hidden node is solved
- Latency is not fluctuating, and low even on busy channel

## **TDMA:** disadvantages

- Latency is higher then 802.11 or Nstreme (with no traffic)
- Higher value for Period-size decrease a little the performance but reduce latency




## **Settings**



### **NV2** settings

- NV2 is the Mikrotik implementation of the TDMA in the 802.11 protocol
- In PTP trasparent bridge, just enable it

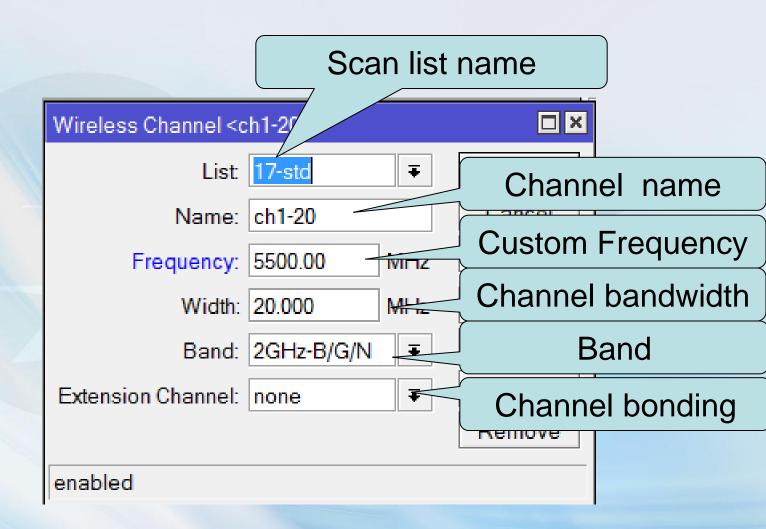


## WIANET WIRELESS DEVICES

### **Nv2 TDMA**

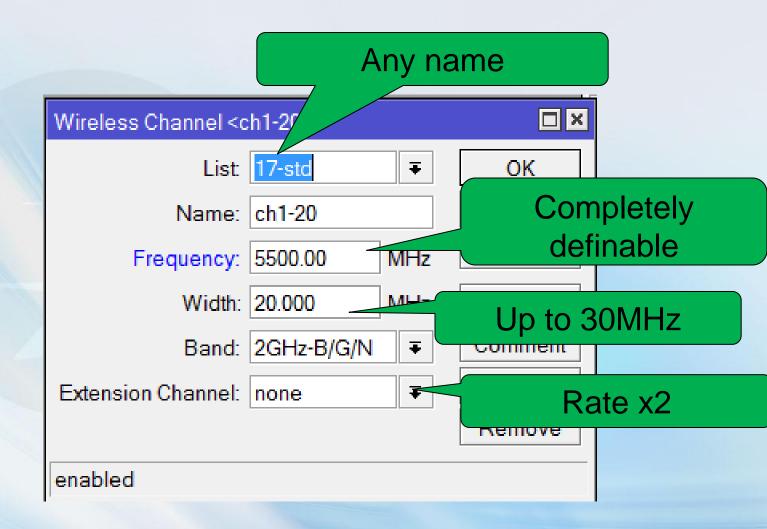
- It has two parameters:
- **Nv2-cell-radius** specifies distance to farthest client in Nv2 network in km. This setting affects the size of contention time slot that AP allocates for clients to initiate connection and also size of time slots used for estimating distance to client.
- tdma-period-size specifies size in ms of time periods that Nv2 AP uses for media access scheduling. Smaller period can potentially decrease latency (because AP can assign time for client sooner), but will increase protocol overhead and therefore decrease throughput




### Superchannel

- RouterOs 6 has a new superchannel feature
- It allows you to :
  - Build a new channel definition
  - Define a custom channel width
  - Define a custom Scan List






#### **Custom Channel**





#### **Custom Channel**





### **Test**



### **Results**



| Trasmission |                 |        |             | Real       | Efficiency |
|-------------|-----------------|--------|-------------|------------|------------|
| mode        | MCS modulation  | Signal | Speed       | Throughput | Bit/Hz ´   |
|             | mcs0-5,8-11 (fb |        |             |            |            |
| 20mhz       | 54mbps)         | -50    | 54/54       | 44,1       | 2,21       |
|             | mcs13           | -50    | 104/104     | 88,2       | 4,41       |
|             | mcs14           | -50    | 117/117     | 101,9      | 5,10       |
|             | mcs15           | -54    | 130/130     | 113,3      | 5,67       |
| 40mhz       | mcs12           | -55    | 180/180     | 158,8      | 3,97       |
| 20/40below  | mcs13           | -52    | 240/240     | 209,8      | 5,25       |
|             | mcs14           | -52    | 270/270     | 234,8      | 5,87       |
|             | mcs15           | -56    | 300/300     | 248,1      | 6,20       |
| 50mhz       | mcs12           | -48    | 225/225     | 201,4      | 4,03       |
|             | mcs13           | -48    | 300/300     | 261,9      | 5,24       |
|             | mcs14           | -48    | 337,5/227,5 | 292,2      | 5,84       |
|             | mcs15           | -48    | 375/375     | 321        | 6,42       |
| 60mhz       | mcs10           | -48    | 135/135     | 98,1       | 1,64       |
|             | mcs11           | -49    | 180/180     | 92,9       | 1,55       |
|             | mcs12           | -48    | 270/270     | 149,7      | 2,50       |
|             | mcs13           | -49    | 324/324     | 163,4      | 2,72       |
|             | mcs14           | -47    | 364/364     | 212,8      | 3,55       |
|             | mcs15           | -47    | 405/405     | 184        | 3,07       |
| 54mhz       | mcs14           | -47    | 364/364     | 319,4      | 5,32       |
|             | mcs15           | -47    | 405/405     | 321        | 5,94       |



### **Speed vs Latency**

#### Speed:

- Use old Nstreme protocol or 802.11 in the wireless protocol mode
- Increase the TDMA period size

#### Latency

- Use NV2 to schedule transmissions
- Reduce period size



## **NV2 TDMA interval**



| TDMA interval | Traffic MBPS |
|---------------|--------------|
| 3             | 294          |
| 4             | 321          |
| 5             | 328          |
| 6             | 323          |
| 7             | 305          |
|               |              |



## The Future?

### 802.11ac



58.5

117

234

351

468

526.5

**585** 

**702** 

**780** 

175.5

65

130

195

260

390

520

585

**650** 

**780** 

866.7

| _ | _ | <br> | <br> | _   |     |
|---|---|------|------|-----|-----|
|   |   |      | WID  | FIF | 5 5 |
|   |   |      | V    | /   | L   |
|   |   |      |      |     |     |

29.3

58.5

87.8

117

234

263.3

292.5

351

**390** 

175.5

32.5

97.5

130

195

260

292.5

325

390

433.3

65

|              |           |                |           |           |           |           |           | •         |           | /         |
|--------------|-----------|----------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| MCC          | Modulatio |                | 20 MHz    | channels  | 40 MHz    | channels  | 80 MHz    | channels  | 160 MHz   | channels  |
| MCS<br>index | n<br>type | Coding<br>rate | 800 ns GI | 400 ns GI |

13.5

40.5

27

54

81

108

121.5

135

162

180

15

30

45

60

90

120

135

150

180

200

**BPSK** 

QPSK

**QPSK** 

5

6

16-QAM

16-QAM 3/4

64-QAM 2/3

64-QAM 3/4

64-QAM

256-

QAM

256-

**QAM** 

1/2

1/2

3/4

1/2

5/6

3/4

5/6

6.5

13

26

39

52

65

78

N/A

58.5

19.5

7.2

14.4

21.7

28.9

43.3

57.8

65

72.2

86.7

N/A

## 802.11ac with two streams

|              | Theoretical throughput for two Spatial Stream (in Mb/s) |                   |                 |           |                 |           |                 |           |                  |           |  |  |  |
|--------------|---------------------------------------------------------|-------------------|-----------------|-----------|-----------------|-----------|-----------------|-----------|------------------|-----------|--|--|--|
|              |                                                         | on Coding<br>rate | 20 MHz channels |           | 40 MHz channels |           | 80 MHz channels |           | 160 MHz channels |           |  |  |  |
| MCS<br>index |                                                         |                   | 800 ns GI       | 400 ns GI | 800 ns GI       | 400 ns GI | 800 ns GI       | 400 ns GI | 800 ns GI        | 400 ns GI |  |  |  |
| 6            | 64-QAM                                                  | 3/4               | 117             | 130       | 243             | 270       | 526.6           | 585       | 1053             | 1170      |  |  |  |
| 7            | 64-QAM                                                  | 5/6               | 130             | 144.4     | 270             | 300       | 585             | 650       | 1170             | 1300      |  |  |  |
| 8            | 256-<br>QAM                                             | 3/4               | 156             | 173.4     | 324             | 360       | 702             | 780       | 1040             | 1560      |  |  |  |
| 9            | 256-<br>QAM                                             | 5/6               | N/A             | N/A       | 360             | 400       | 780             | 866.6     | 1560             | 1733,4    |  |  |  |



### Thanks for your attention!

Visit our stand Wi4Net Totalconn

www.wi4net.it

Info@wi4net.it

Andrea. Grittini@wi4net.it



Wireless High