

HTB vs PCQ

by: **Valens Riyadi**Citraweb Nusa Infomedia, Indonesia
www.mikrotik.co.id

Introduction

- Valens Riyadi
- Work for Citraweb/Citranet
 - Mikrotik distributor, training partner
 - ISP, web developer
- Using Mikrotik since 2.3.15 (2001)
- MTCNA, MTCTCE, MTCUME, MTCRE, MTCWE, MTCINE, Certified Trainer

Remote Access

Remote Access to my router:

- SSID : MUM-QOS

– IP Address : 10.3.2.1

– Username : demo

Password : [empty]

Bandwidth Management

- MikroTik RouterOS is one of the most advanced (and easy to configure) OS/ application for bandwidth management.
- Bandwidth management done by utilize shaper and scheduler
 - Shaper: HTB and PCQ
 - Scheduler : FIFO, RED, SFQ

Question

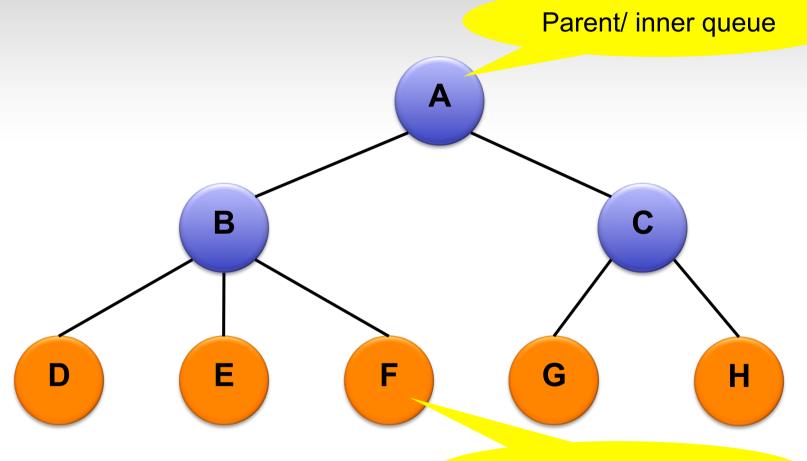
- Which one is better, HTB or PCQ?
- When we need to use HTB, or PCQ?

Hierarchical Token Bucket (HTB)

 Hierarchical Token Bucket (HTB) allows to create a hierarchical queue structure and determine relations between queues, like "parent-child" or "child-child".

Basic Concept

- HTB (Hierarchical Token Bucket) is part of QoS, to make a hierarchical queue structure and determine relations between queues (priority, burst possibility, etc)
- HTB is meant as a more understandable, intuitive and faster replacement for the CBQ qdisc in Linux.
- HTB assigned to any physical interface or virtual interface (global-in, global-out, globaltotal)



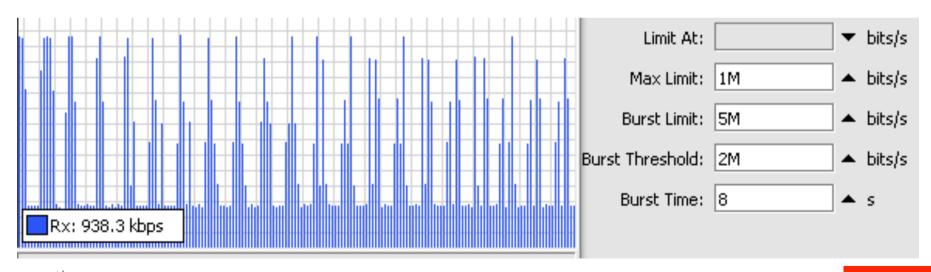
HTB Features

- Hierarchy
 - Almost no hierarchy limit, the limit is your imagination
- Grouping
 - We can group several clients, into one parent
 - One client can borrow bandwidth from another client in same group, if needed.
- Independent setting for each leaf queue

HTB Sample

Child = leaf queue

HTB Sample



limit-at and prioritywork only if you usehierarchy (parent)

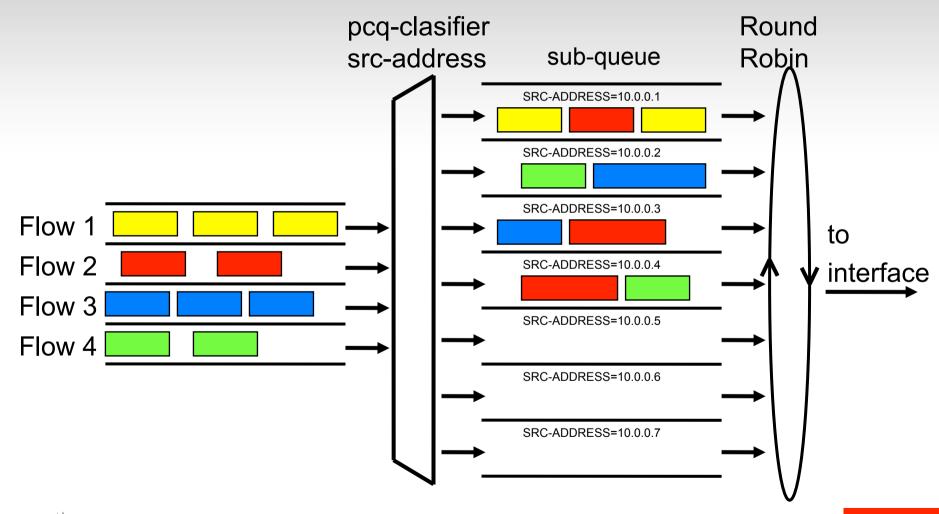
Independent setting for leaf

- We can set different limit and burst for each leaf.
- Certain burst parameter will make "normal" customer think their bandwidth fast.

 More detail explanation about HTB : My presentation MUM USA 2009

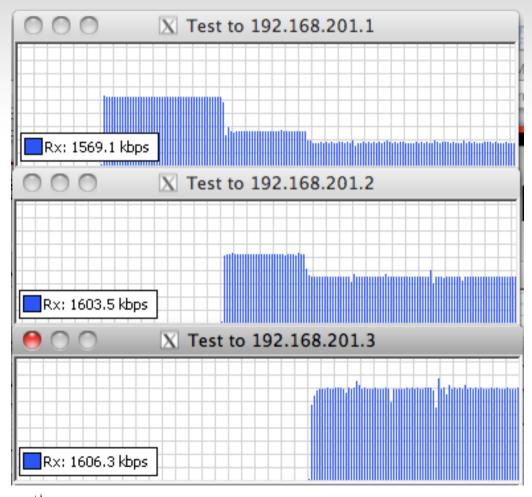
– PDF : http://bit.ly/aotax9

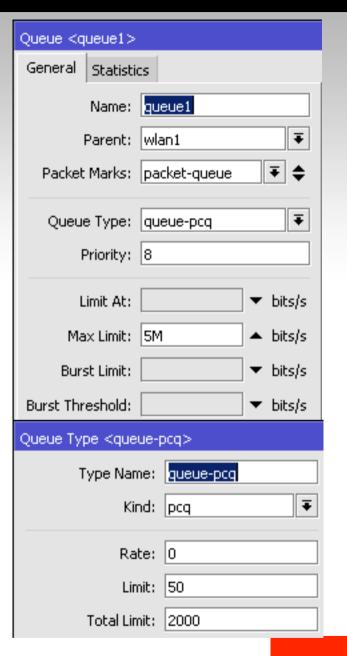
– Video : http://bit.ly/bFrRiP

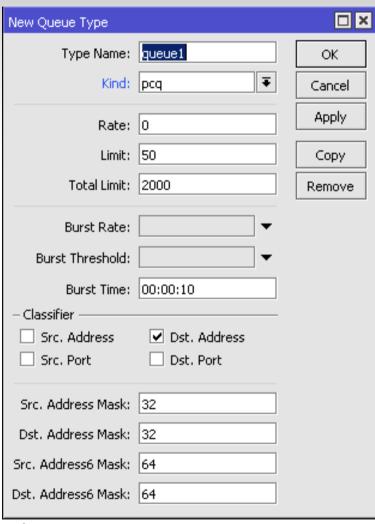


Per Connection Queuing (PCQ)

- Using flow identifiers (dst-address, dstport, src-address or src-port) to differentiate traffic into sub-streams.
- Introduced to optimize massive QoS systems, where most of the queues are exactly the same for each sub-streams
- 1 rule can handle hundreds customer, and limit them individually




PCQ Flow


PCQ Sample

PCQ Configuration

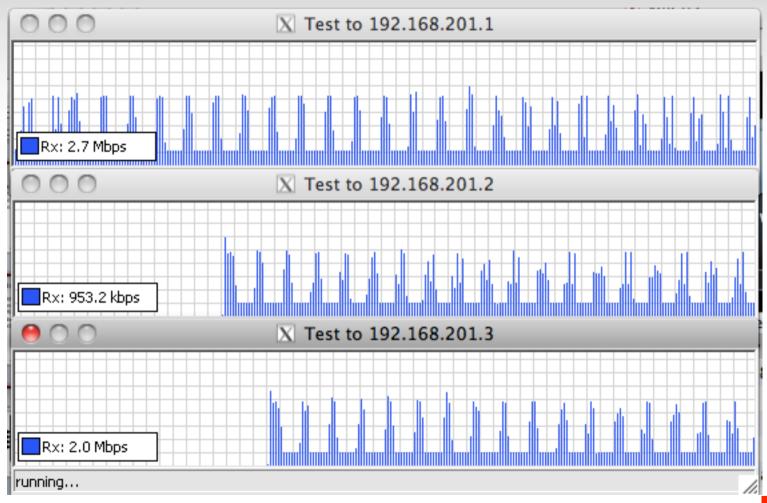
New parameters since RoS 5rc4

- Burst
- Mask (for IPv4 and IPv6)

PCQ Configuration

Rate:	0
Limit:	50
Total Limit:	2000

- Rate = sub-stream max-limit
- Total-limit (packet in queue) = Limit * number of sub-stream
- Ex: 100 customers, 100 packets per customer (limit), and total-limit=10,000



Burst on Sub-Stream

Queue <queue1></queue1>		Queue Type <queue-pcq></queue-pcq>		
General Statist	ics	Type Name: queue-pcq		
Name:	queue1	Kind: pcq ₹		
Parent:	wlan1 ₹	Rate: 1M		
Packet Marks:	packet-queue ₹ ♦	Limit: 50		
Queue Type:	queue-pcq ₹	Total Limit: 2000		
Priority:	8	Burst Rate: 5M ▲		
Limit At:	▼ bits/s	Burst Threshold: 2M		
Max Limit:	20M ▲ bits/s	Burst Time: 00:00:10		
Burst Limit:	▼ bits/s	- Classifier		
Burst Threshold:	▼ bits/s	✓ Src. Address □ Dst. Address □ Dst. Port		
Burst Time:				
	www.mil	krofik co id		

Burst on Sub-Stream

Burst on Sub-Stream

Src. Address Mask:	32
Dst. Address Mask:	32
Src. Address6 Mask:	64
Dst. Address6 Mask:	64

- Now we can group customer that have same subnet size, not only /32
- PCQ now work in IPv6 also, and we can set the subnet

PCQ with Queue Tree

- PCQ (with src-address classifier) and Queue Tree (interface based) on NATed network will not work for uplink traffic.
 - Because interface queue for uplink located after src-nat process → all src-addresses become same
- Suggestions:
 - change the interface to global-in, or
 - use simple queue and set the interface parameter.

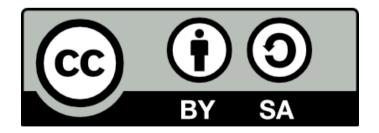
Note:

 In PCQ, if both limits (pcq-rate and maxlimit) are unspecified, queue behavior can be imprecise. So it is strongly suggested to have at least one of these options set.

PCQ with HTB

- In HTB, we can not set priority on inner queue (groups of clients)
- PCW rule is a leaf queue, we can set priority as the priority of group of clients
 - One group more prioritized than another

Name 🗡	Parent	. Queue Type	Priority . Max	:Li △ Avg. R
🚊 queue3-parent	wlan1	default	8	5M 4.9 Mbps
🚊 queue1	queue3-parent	. default	8	5M 60.5 k
📃 queue2-pcq	queue3-parent	. queue-pcq	1	5M 4.8 Mbps


Conclusions

- Faster configuration with PCQ, one rule for all clients (with same treatment)
- HTB used if clients have different speed and setting
- Since v5rc4, PCQ have sub-stream's burst parameter, this give similar function as in HTB
- MikroTik is ready to queue IPv4 and IPv6

Thank You!

info@mikrotik.co.id

