LUZ-0

IPv6 Introduction on MikroTik

MikroTik User Meeting, Jakarta, November 6th 2009 Christian Dwinantyo D-NET

<u>ГШИ-</u>

Introduction

- Speaker
 - Christian Dwinantyo
 - NOC Manager @ D-NET
 - christian@dnet.net.id
- Company
 - D-NET
 - A Medium size ISP focus on corporate customers
 - Use MikroTik as CPE router and gateways.

上川乙-0

Acknowledgement

- The material used in this course was created by using :
 - Information and slides provided by APNIC
 - MikroTik Wiki about IPv6 in RouterOS.
 - http://wiki.mikrotik.com
- We acknowledges with thanks and appreciation the contribution and support of APNIC and MikroTik Wiki.

Internet Service Provider

ЬШИ-О

Overview

- What is IPv6?
 - Enhancement from IPv4
- IPv6 addressing
 - Autoconfiguration
- Why do we need IPv6?
- Transition
 - Dual stack, tunneling, translation
- RouterOS support on IPv6
 - Routing protocols
 - Firewall
 - wireless

上川乙-0

Internet Service Provider

What is IPv6

- RFC2460:
 - IP version 6 (IPv6) is a new version of the Internet Protocol, designed as the successor to IP version 4 (IPv4) [RFC-791]. The changes from IPv4 to IPv6 fall primarily into the following categories:
 - Expanded Addressing Capabilities
 - Header Format Simplification
 - Improved Support for Extensions and Options
 - Flow Labeling Capability

Improvement from IPv4

- 128 bits, compared to 32 bits IPv4
- Longer but simpler header
- Neighbor Discovery to replace ARP
- New address types: unicast, multicast and anycast.
- No longer use broadcast
- Autoconfiguration

LШ Intern

Address Space

- IPv4 address space (32 bits):
 - 2³² = 4,294,967,296 addresses
- IPv6 address space (128 bits):
 - 2¹²⁸= 340,282,366,920,938,463,463,374,607,431,768,211,456 addresses

Internet Service Provider IPv4 and IPv6 header comparison Version 4 bits IHL 4 bits Type of Service Total Length 16 bits Traffic Class Flow Label 8 bits 4 bits 20 bits Payload Length Identification Hop Limits rotocol Heade Header Checksum Source Address 128 bits Source Address 32 bits Destination Address 32 bits IP options 0 or more IPv4 Header bits Destination Address 128 bits = Eliminated in IPV6 =Enhanced in IPv6 → =Enhanced in IPv6 → =Enhanced in IPv6

Neighbor Discovery Protocol

- Replace ARP function in IPv4.
- Responsible for discovery of other nodes on the link.
- Determining the link layer addresses of other nodes.
- Finding available routers.
- Maintaining reachability information about the paths to other active neighbor nodes.
- Used in address autoconfiguration.

IPv6 Addressing

- Hexadecimal values of eight 16 bit fields separated by colon.
- Example:
 - 2001:0DB8:124C:C1A2:BA03:6735:EF1C:683D
- Abbreviated form of address
 - 2001:0DB8:0023:0000:0000:036E:1250:2B00
 - 2001:DB8:23:0:0:36E:1250:2B00
 - 2001:DB8:23::36E:1250:2B00
 - (Null value can be used only once)

L U L U

IPv6 Address Types

- Unicast
 - An identifier for a single interface

- Anycast
 - An identifier for a set of interfaces

- Multicast
 - An identifier for a group of interfaces

Internet Service Provider

IPv6 Addressing – Unicast Address

- Link-Local Address (fe80::/10)
 - Used to communicate between other ipv6 interfaces in the same network link.
 - Only valid on a single link.
 - Auto assigned
 - Not routeable to Internet.
- Global Address
 - Routeable to Internet

НШИ-О

Special IPv6 addresses

- Unspecified address
 - 0:0:0:0:0:0:0:0/128 (::/128)
 - Similar to 0.0.0.0 in IPv4
- Loopback address
 - 0:0:0:0:0:0:0:1/128 (::1/128)
 - Similar to 127.0.0.1 in IPv4
- Link-Local addresses
 - fe80::/10
- Unique Local addresses (ULA)
 - fc00::/7
- Documentation addresses
 - 2001:db8::/32

Internet Service Provider

上川乙-0

IPv6 Addressing – Global Unicast Address

- Global Routing Prefix
 - Assigned to a site, eg. 2404:1b8
 - Designed to be structuted hierarchically by the RIRs and ISPs
- Subnet ID
 - Identifier of a subnet within a site
- Interface ID
 - Unique identifier for a particular interface of a device.

IPv6 Addressing – Global Unicast Address

Example: an ISP received 2001:db8/32

- Ipv6 address in a host in that ISP: 2001:db8:1:1:7d9f:26c7:30d3:ee82
 - 2001:db8 → global routing prefix
 - $-1:1 \rightarrow$ subnet ID
 - 7d9f:26c7:30d3:ee82 → interface ID

IPv6 Addressing - Interface ID

- The lowest-order 64-bit field addresses
- may be assigned in several different ways:
 - auto-configured from a 48-bit MAC address expanded into a 64-bit EUI-64
 - assigned via DHCP
 - manually configured
 - auto-generated pseudo-random number
 (to counter some privacy concerns: RFC 3041)
 - possibly other methods in the future

ト川乙・〇

IPv6 Autoconfiguration

- Using Link-Local to communicate to other devices in the same link.
- Enable Plug and Play
- No manual configuration on client side
- Minimal router configuration
- Stateless → Does not need DHCP server
- Statefull → Need DHCP Server (running DHCPv6)

Internet Service Provider

IPv6 Autoconfiguration - Stateless Router with RA (Router Advertisement) RA (Router Advertisement) RA (Router Advertisement) RA (Router Advertisement) Host. A Fe80::7d9f:26c7:30d3:ee82 1. new Host A is turned on, tentative address will be assigned to the new host. 2. Duplicate Address Detection (DAD) is performed, the host transmit a Neighbor Solicitation (NS) message to all-nodes multicast address (FF02::1), 3. If no Neighbor Advertisement (NA) message comes back then the address is unique. 4. fe80:7d9f:26c7:30d3:ee82 will be assigned to Host A.

Service

Internet

IPv6 Autoconfiguration - Stateless

2001:db8:1:1/64 Network

fe80::7d9f:26c7:30d3:ee82 2001:db8:1:1:7d9f:26c7:30d3:ee82

- 1. Host. A will send Router Solicitation (RS) request to the all-routers multicast group (FE02::2).
- 2. The router will reply with Routing Advertisement (RA).
- 3. The new host will learn the network prefix. E.g, 2001:db8:1:1/64
- 4. The new host will assigned a new address Network prefix+Interface ID 2001:db8:1:1:7d9f:26c7:30d3:ee82

Why we need IPv6

- IPv4 exhaustion.
 - Only 10% left
- Considerable number of Internet users growth.
- IPv6 provide larger address space.

IPv6 Transition Methods

Three basic transition methods:

Dual Stack

- IPv4 and IPv6 can coexist in the same device.
- Smoother transition
- Need all nodes to be dual stacked.
- If we can dual stack all nodes, does it mean that we have enough IPv4, thus eliminate the need of IPv6?

Internet Service Provider

НШИ-О

IPv6 Transition Methods

Tunneling

- IPv6 data is encapsulated in IPv4
- A great way to start if your upstream does not support IPv6 connectivity.

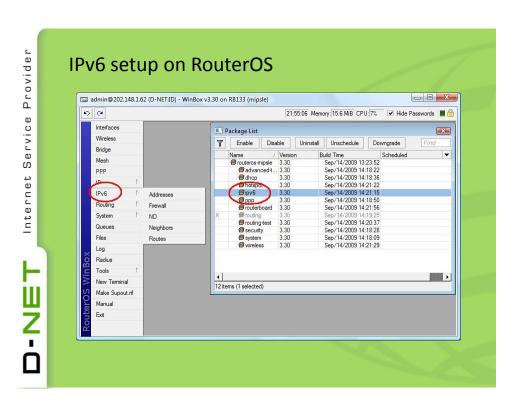
Provider Internet Service

IPv6 Transition Methods

Translation

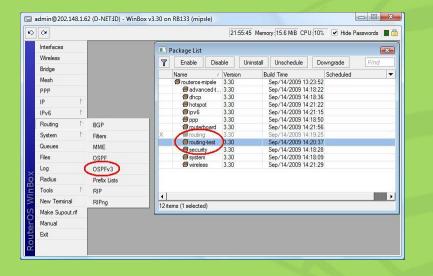
Not yet supported in RouterOS

Internet Service Provider


LUZ-0

IPv6 in RouterOS

- MikroTik IPv6 support at the moment (RouterOS 3.28/4.0beta4):
 - static addressing and routing;
 - router advertisement daemon (for address autoconfiguration)
 - dynamic routing: BGP+, OSPFv3, and RIPng protocols
 - DNS name servers;
 - 6in4 (SIT) tunnels;
 - telnet , ping and traceroute;
 - web proxy;
 - sniffer and fetch tools;


IPv6 in RouterOS

- Features not yet supported:
 - DHCPv6;
 - all PPP (Point-to-point protocols);
 - IPSEC;
 - SSH, FTP, API, Winbox, Webbox access;
 - queues;
 - automatic tunnel creation;
 - policy routing;
 - multicast routing;
 - MPLS;
 - torch, netwatch, bandwidth test and other tools;

More Routing Protocols on RouterOS

Internet Service Provider

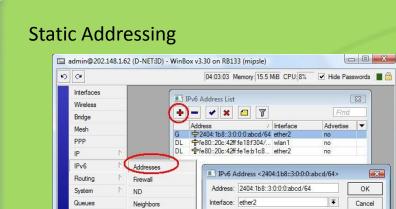
ト川フ・

Static Addressing

Add address:

>ipv6 address add address=2404:1b8:0:3::abcd/64
interface=ether2 advertise=no

See all IPv6 addresses:



上 Ш Z -

Provider

Service

nternet

Apply

Disable Comment

Remove

Global

Default Route

Files

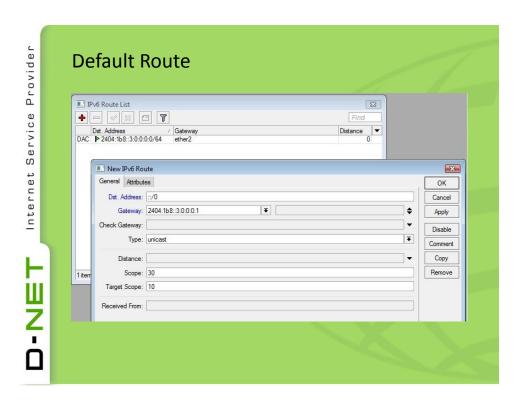
Log

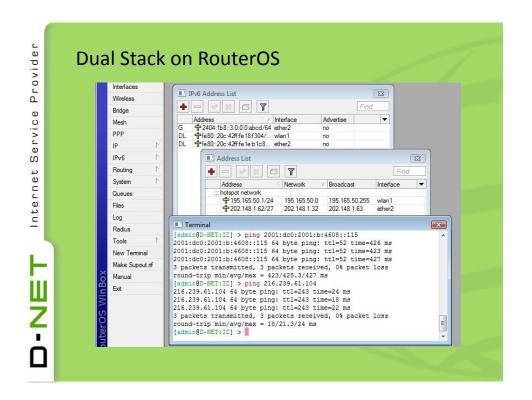
Make Supout.rif

Routes

Add Default Route

> ipv6 route add dst-address=::/0 gateway=2404:1b8:0:3::1


☐ EUI64

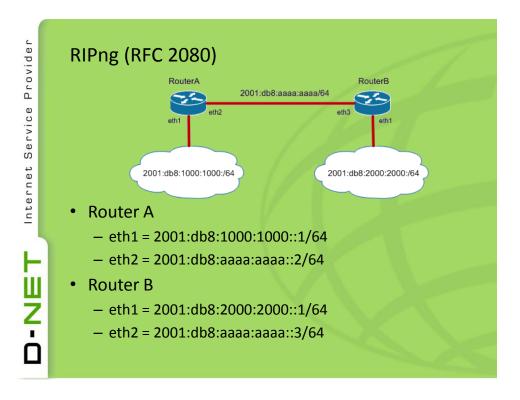

Advertise

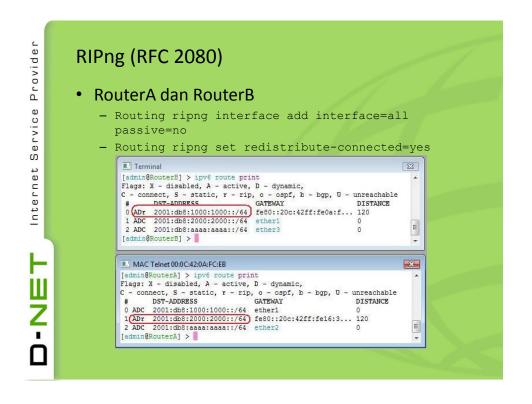
See all IPv6 route

```
> ipv6 route print
Flags: X - disabled, A - active, D - dynamic,
C - connect, S - static, r - rip, o - ospf,
b - bgp, U - unreachable
# DST-ADDRESS GATEWAY DISTANCE
0 A S ::/0 2404:1b8::3:0:0:0:1 1
```

1 ADC 2404:1b8::3:0:0:0/64 ether2

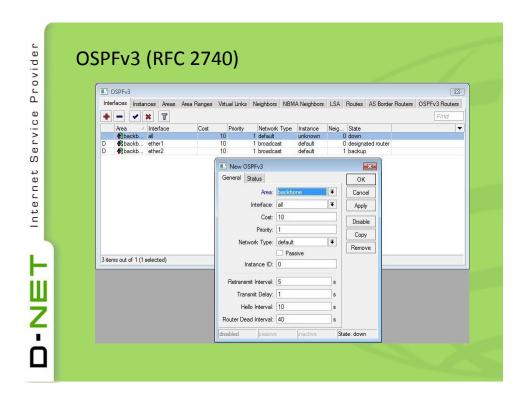
ТШИ-О


Internet Service Provider


Dynamic Routing Protocols

- All dynamic routing protocols (RIPng, OSPFv3, BGP) require a valid Router ID to function.
- Router ID can be:
 - configured manually,
 - one of router's IPv4 addresses
- If no IPv4 addresses are present, the router ID selection process will fail → Dynamic routing protocols will also not work.

RIPng (RFC 2080)


- Distance-vector, radius of 15 hops
- Based on RIPv2
- Support IPv6
- Uses built-in IPSec feature in IPv6 for authentication
- Uses the multicast group ff02::9, the all-riprouters multicast group, as the destination address for RIP updates.

OSPFv3 (RFC 2740)

- Uses the same fundamental mechanisms as OSPFv2
- Not backward compatible with OSPFv2
- Dual stack running OSPF must have both OSPFv2 and OSPFv3 configured.
- no configuration for networks anymore
- and interface configuration becomes mandatory, since OSPFv3 runs on link, not IP subnet, basis.

- ШИ-О

OSPFv3 (RFC 2740)

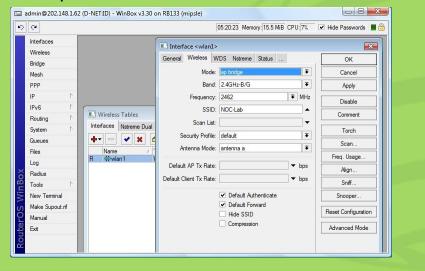
- Using the previous topology, on RouterA and RouterB, we add:
 - routing ospf-v3 instance add
 name=default redistribute-static=as type-1
 - routing ospf-v3 area add name=backbone instance=default
 - routing ospf-v3 interface add interface=all area=backbone

Internet Service Provider

OSPFv3 (RFC 2740) **■** Terminal 23 [admin@RouterA] > routing ospf-v3 route print # DESTINATION STATE COST 0 2001:db8:1000:1000::/64 10 20 intra-area 1 2001:db8:2000:2000::/64 intra-area 2 2001:db8:aaaa:aaaa::/64 [admin@RouterA] > ipv6 route print Flags: X - disabled, A - active, D - dynamic, C - connect, S - static, r - rip, c - ospf, b unreachable bgp, U # DST-ADDRESS GATEMAY
0 ADC 2001:dbs:1000:1000::/64 ether1
[1 ADc 2001:dbs:2000:2000::/64 fe80::200:42ff:fe16:3
2 ADC 2001:dbs:aaaa:aaaa::/64 ether2 DISTANCE [admin@RouterA] > MAC Telnet 00:0C:42:16:32:71 X [admin@RouterB] > routing ospf-v3 route print # DESTINATION STATE COST 0 2001:db8:1000:1000::/64 20 10 intra-area 1 2001:db8:2000:2000::/64 intra-area 2 2001:db8:aaaa:aaaa::/64 [admin@RouterB] > ipv6 route print Flags: X - disabled, A - active, D - dynamic, C - connect, S - static, r - rip, o - ospf, b - bgp, U - unreachable # DST-ADDRESS GATEWAY DISTA (0 ADo 2001:db8:1000:1000::/64 fe80::200:42ff:fe0a:f... 110) 1 ADC 2001:db8:2000:2000::/64 ether1 0 2 ADC 2001:db8:aaaa:aaaa::/64 ether3 [admin@RouterB] >

Provider Service Internet

BGP (RFC 2545/2858)


- BGP already supports multiple address families
- Example using the same topology, with AS 65530:
- routerA
 - routing bgp peer add remoteaddress=2001:db8:aaaa:aaaa::3 remoteas=65530 address-families=ip,ipv6
 - routing bgp network add network=2001:db8:1000:1000::/64
- routerB
 - routing bgp peer add remoteaddress=2001:db8:aaaa:aaaa::2 remoteas=65530 address-families=ip,ipv6

Provider BGP (RFC 2545/2858) II. Terminal 23 [admin@RouterA] > routing bgp peer print Service Flags: X - disabled, E - established INSTANCE REMOTE-ADDRESS REMOTE-AS 0 E default 2001:db8:aaaa:aaaa::3 65530 [admin@RouterA] > Internet MAC Telnet 00:0C:42:16:32:71 [admin@RouterB] > ipv6 route print Flags: X - disabled, A - active, D - dynamic, C - connect, S - static, r - rip, o - ospf, b - bgp, U - unreachable DST-ADDRESS GATEWAY DISTANCE (0 ADb 2001:db8:1000:1000::/64 fe80::20c:42ff:fe0a:f... 200) 1 ADC 2001:db8:2000:2000::/64 2 ADC 2001:db8:aaaa:aaaa::/64 ether3 0 [admin@RouterB] > Instances VRFs Peers Networks Aggregates VPN4 Routes Advertisements ■ ✔ 🗶 🗂 🗑 Refresh Refresh All Resend Resend All

IPv6 Wireless

Setup wlan Interface

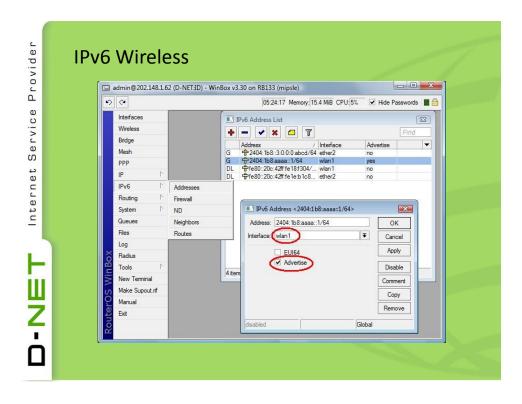
Provider Service Internet

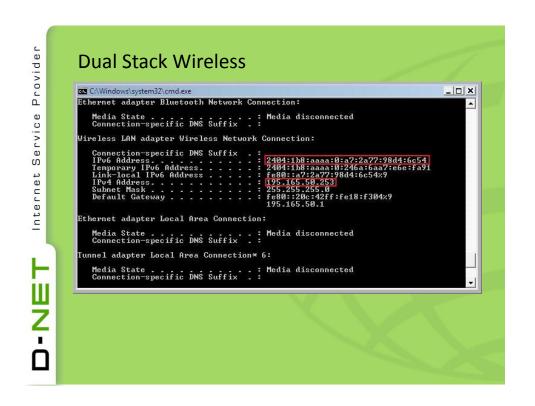
IPv6 Wireless

Add IPv6 address to wlan interface

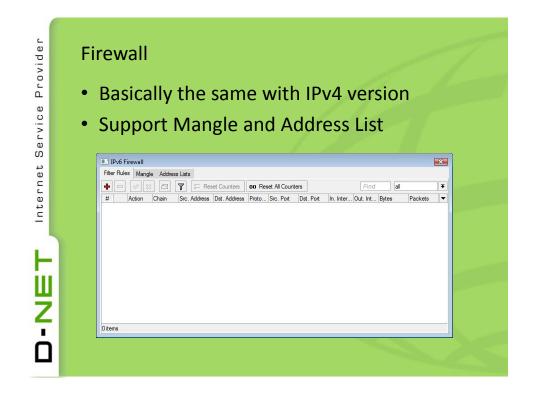
- > ipv6 address add address=2404:1b8:aaaa::1/64 interface=wlan1 advertise=yes
- > ipv6 address print

Flags: X - disabled, I - invalid, D - dynamic, G - global, L - link-local


ADDRESS INTERFACE ADVERTISE 0 DL fe80::20c:42ff:fe1e:b1c8/64 ether2


1 DL fe80::20c:42ff:fe18:f304/64 wlan1 no

2 G 2404:1b8::3:0:0:0:abcd/64 ether2 no


3 G 2404:1b8:aaaa::1/64 wlan1 yes

no

-ШZ-С

6to4 Tunneling

- Need a global routable IPv4 address for router interface.
- If you don't have your own AS and IPv6 address block:
 - Sign in at a tunnel broker, eg: www.tunnelbroker.net
 - Click "Create Regular Tunnel"
 - Setup 6to4 interface on RouterOS
 - Time needed: 5 minutes.

Internet Service Provider

6to4 Tunneling After you register, you will get something like this: Server IPv4 address: 216.218.221.6 Server IPv6 address: 2001:470:18:2ee::1/64 Client IPv4 address: 202.148.1.95 Client IPv6 address: 2001:470:18:2ee::2/64 Anycasted IPv6 Caching Nameserver: 2001:470:20::2 Anycasted IPv4 Caching Nameserver: 74.82.42.42 Routed /64: 2001:470:19:2ee::/64 202.148.1.95 216.218.221.6 2001:470:18:2ee::2 2001:470:18:2ee IPv6 Network 2001:470:19:2ee::/64 IPv6 packet is encapsulated in an IPv4 packet

НШИ-

6to4 Tunneling

· On RouterOS:

>interface 6to4 add comment="Hurricane Electric IPv6 Tunnel Broker" disabled=no local-address=202.148.1.95 mtu=1280 name=sit1 remote-address=216.218.221.6

>ipv6 route add comment="" disabled=no distance=1 dstaddress=2000::/3 gateway=2001:470:18:2ee::1 scope=30
target-scope=10

>ipv6 address add address=2001:470:18:2ee::2/64
advertise=yes disabled=no eui-64=no interface=sit1

>ipv6 address add address=2001:470:19:2ee::1/64
advertise=yes disabled=no eui-64=no interface=eth1

Provider

Service

Internet

6to4 Tunneling

```
III Terminal
[admin@RouterA] > interface print
Flags: D - dynamic, X - disabled, R - running, S - slave
      NAME
                                                                 MTU
                                                                       L2MTU
                                                                 1500 1600
0 R ether1
                                                ether
1 R ether2
                                                                 1500 1600
                                                ether
                                                                 1500 1600
       ether3
                                                ether
   X pptp-in1
                                                pptp-in
4 R ;;; Hurricane Electric IPv6 Tunnel Broker
      sit1
                                                                 1280
[admin@RouterA] > ipv6 address print
Flags: X - disabled, I - invalid, D - dynamic, G - global, L - link-local
     ADDRESS
                                                 INTERFACE
                                                                   ADVERTISE
   G 2001:470:18:2ee::2/64
                                                 sit1
                                                                   yes
   G 2001:470:19:2ee::1/64
                                                 ether1
                                                                   yes
 2 DL fe80::ca94:128/128
                                                 sit1
                                                                   no
 3 DL fe80::20c:42ff:fe0a:fcea/64
                                                 ether1
                                                                   no
4 DL fe80::20c:42ff:fe0a:fceb/64
                                                 ether2
                                                                   no
[admin@RouterA] >
```

Internet Ser

6to4 Tunneling

- If you have your own AS and IPv6 address block, you can fill this form:
 - http://www.tunnelbroker.net/ipv6_bgp.php
- Build a 6to4 Tunnel
- Setup a full BGP session though this tunnel

Internet Service Provider

上川乙-C

Thank You!