USING VRRPv3 ON MIKROTIK

YOGYAKARTA, 19-20 OKTOBER 2018

MUM INDONESIA 2018

PARMOHONAN HASIBUAN

About Me

PARMOHONAN HASIBUAN

- 2013 2014 Network Operation Center at VSAT ISP
- □ 2014 2015 Network Operation Center at WISP
- □ 2016 Now Teacher at Taruna Bhakti Depok Vocational High School
- 2016 Now MikroTik Consultant

Consultant

https://mikrotik.com/consultants/asia/indonesia

Contact

parmohonanh@gmail.com

About Taruna Bhakti Depok

Placed at JI Pekapuran Kel Curug Kec Cimanggis Depok Jawa Barat Motto : Our Quality Ask Be Different 5 Majors

- 1. Network Engineering
- 2. Software Engineering
- 3. Multimedia
- 4. Broadcasting

5. Electrical Engineering Industry Website : <u>www.smktarunabhakti.net</u> Mail : taruna@smktarunabhakti.net

About Taruna Bhakti Depok

What is VRRP

(Virtual Router Redundancy Protocol)

is a computer networking protocol that provides for automatic assignment of Available Internet Protocol (IP) routers to participating hosts. This increases The availability and reliability of routing paths via automatic default gateway selections on an IP subnetwork.

High Avaibility ?

High availability refers to systems that are durable and likely to operate continuously without failure for a long time.

VRRP v3 Can Implement for IPv4 and IPv6

VRRPv2 VS VRRPv3

Parameter	VRRPv2	VRRPv3
RFC	RFC 3768 (http://tools.ietf.org/html/rfc3768)	RFC 5798 (http://tools.ietf.org/html/rfc5798)
Protocol Supported	Support for IPV4 only.	Supports both IPv4 and IPv6
Timers	Timers in seconds	Timers in Milliseconds
Multicast Address	224.0.0.18 for IPv4 address	224.0.0.18 for IPV4 FF02:0:0:0:0:0:0:12 for IPv6
Virtual Router-ID	IPv4 – Uses mac address 0000.5E00.0 1xx, where xx is the virtual router id in hexadecimal	 IPv4 – Uses mac address 0000.5E00.0 1xx, where xx is the virtual router id in hexadecimal IPv6 – The multicast address FF02::12 is used to send hello messages.
Preemption criteria	Node with same priority value but higher IP would cause preemption.	Only higher priority would cause preemption
Enable VRRP	Enabled on per interface basis.	Need to be enabled globally

8

Hexadecimal values of eight 16 bit fields separated by colon

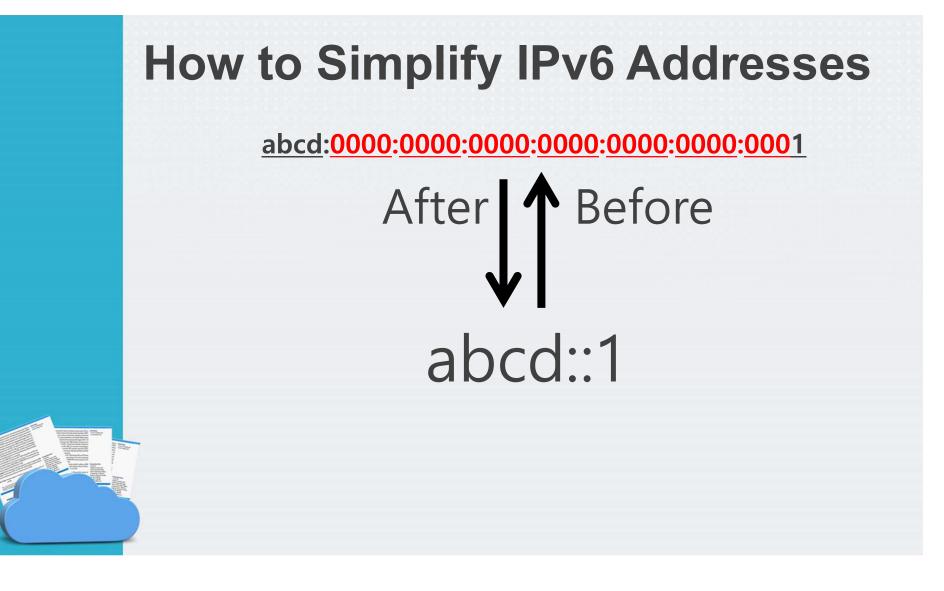
3

<u>abcd:0000:0000:0000:0000:0000:0000:0000</u>

- 4

4

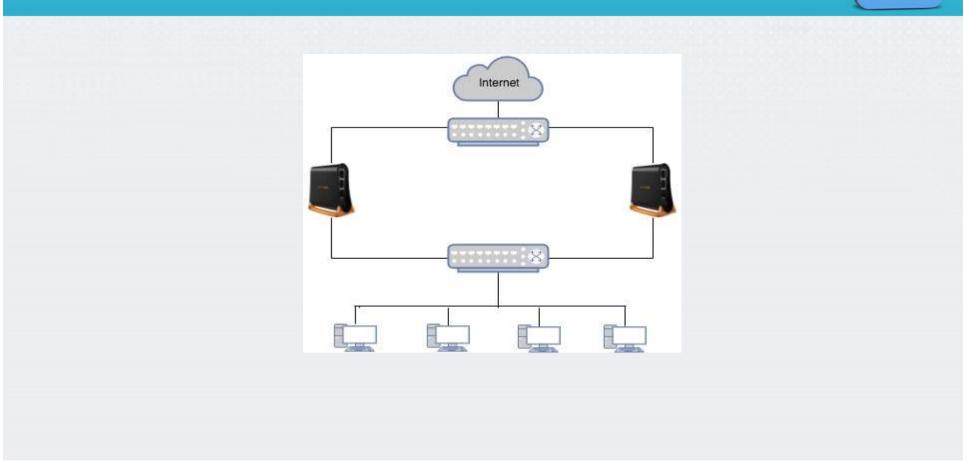
5


7

6

- 128 bit
- 340 undecillion (10³⁶) ip address

2


- 8 field
- 16 bit on each field
- Use hexadecimal (0-9, A-F)
- Separated by ":" (colon)

Wrong abcd:0098::1234::5678 Correct abcd:0098::1234:0:5678

Topology

Virtual Router

A Virtual Router (VR) consists of one Owner router and one or more backup routers belonging to the same network. VR includes:

- VRID configured on each VRRP router
- the same virtual IP on each router
- Owner and Backup configured on each router. On a given VR there can be only one Owner

Virtual MAC address

VRRP automatically assigns MAC address to VRRP interface based on standard MAC prefix for VRRP packets and VRID number. First five octets are 00:00:5E:00:01 and last octet is configured VRID. For example, Virtual Routers VRID is 20, then virtual MAC address will be *00:00:5E:00:01:14*.

Note: Virtual mac address can not be manually set or edited.

Don't Forget

Master & Backup

Master

Master router in a VR operates as the physical gateway for the network for which it is configured. Master selection by priority value.

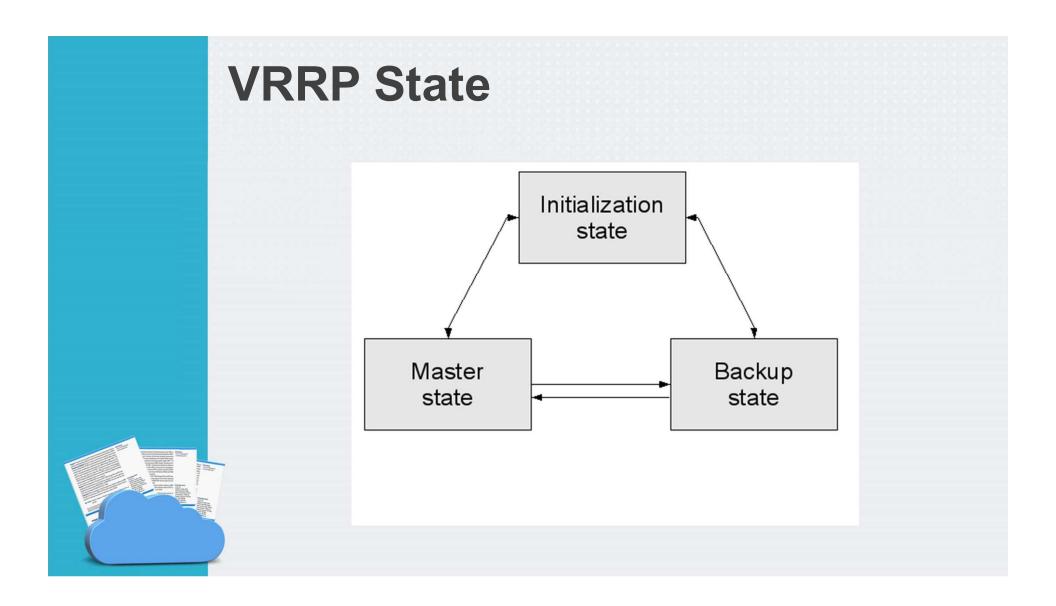
Backup

VR must contain at least one backup router. Virtual IP must same. VR Priority backup is 100.

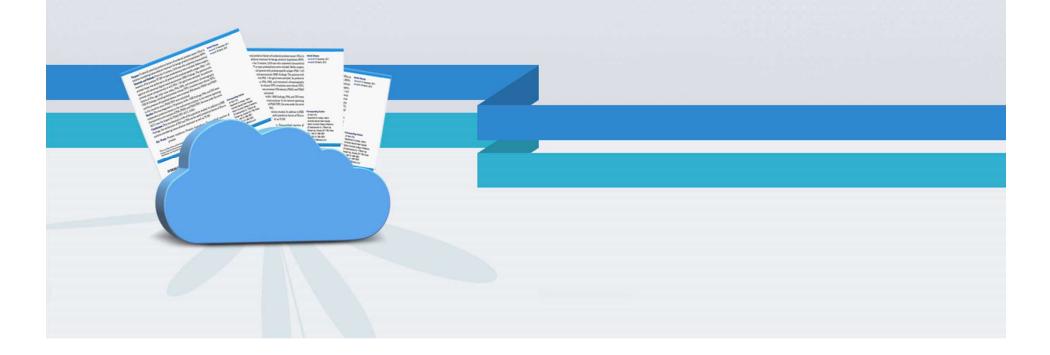
Virtual Address

- Virtual IP associated with VR must be identical and set on all VR nodes
- All virtual and real addresses should be from the same network.

IPv4 VS IPv6


IPv4 ARP

The Master for a given VR responds to ARP requests with the VR's assigned MAC address.


IPv6 ND

As you already know there are no ARP in IPv6 networks, routers are discovered by Neighbor Discovery protocol.

Configuration

Result

MikroTik-1

[[admin@MikroTik] > interface vrrp print detail

```
Flags: X - disabled, I - invalid, R - running, M - master, B - backup
0 RM name="vrrp1" mtu=1500 mac-address=00:00:5E:00:02:14 arp=enabled
arp-timeout=auto interface=ether1 vrid=20 priority=254 interval=1s
preemption-mode=yes authentication=none password="" on-backup=""
on-master="" version=3 v3-protocol=ipv6
```

MikroTik-2

[[admin@MikroTik] > interface vrrp print detail

```
Flags: X - disabled, I - invalid, R - running, M - master, B - backup
0 B name="vrrp1" mtu=1500 mac-address=00:00:5E:00:02:14 arp=enabled
arp-timeout=auto interface=ether5 vrid=20 priority=100 interval=1s
[ preemption-mode=yes authentication=none password="" on-backup=""
[ on-master="" version=3 v3-protocol=ipv6
```

Load Sharing

MikroTik-1

- Interface vrrp add name=vrrp2 vrid=19 interface=ether1 version=3 v3-protocol=ipv6
- Ipv6 address add address=2018::4/64 advertise=yes interface=vrrp2

MikroTik-2

- Interface vrrp add name=vrrp2 vrid=19 priority=254 interface=ether=5 version=3 v-3-protocol =ipv6
- Ipv6 address add address=2018::4/64 advertise=yes interface=vrrp2

You must think how about make your "networking" stable

It's Me

Parmohonan Hasibuan

Mail : parmohonanh@gmail.com Phone : 085770953060 (wa) 081385304719 (telp) Fb : parmohonanh Scan Me

